• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 42
  • 20
  • 19
  • 18
  • 17
  • 13
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 353
  • 61
  • 54
  • 34
  • 32
  • 31
  • 22
  • 20
  • 19
  • 18
  • 18
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Modelling the Dynamics of Mass Capture

Lahey, Timothy John January 2013 (has links)
This thesis presents an approach to modelling dynamic mass capture which is applied to a number of system models. The models range from a simple 2D Euler-Bernoulli beam with point masses for the end-effector and target to a 3D Timoshenko beam model (including torsion) with rigid bodies for the end-effector and target. In addition, new models for torsion, as well as software to derive the finite element equations from first principles were developed to support the modelling. Results of the models are compared to a simple experiment as done by Ben Rhody. Investigations of offset capture are done by simulation to show why one would consider using a 3D model that includes torsion. These problems have relevance to both terrestrial robots and to space based robotic systems such as the manipulators on the International Space Station capturing payloads such as the SpaceX Dragon capsule. One could increase production in an industrial environment if industrial robots could pick up items without having to establish a zero relative velocity between the end effector and the item. To have a robot acquire its payload in this way would introduce system dynamics that could lead to the necessity of modelling a previously ‘rigid’ robot as flexible.
312

The influence of microstructural deformations and defects on mechanical properties in cast aluminium components by using Digital Image Correlation Techniques (DICT)

Armanjo, Jahanmehr January 2015 (has links)
Digital image correlation techniques (DICT), a non-contact deformation measuring technique based on gray value digital images, have become increasingly used over the last years. By using the DIC technique during a tensile test, the deformation behavior of different engineering material under an applied load can be determined and analyzed. Digital images, acquired from a tensile test, can be correlated by using DICT software and from that the local or global mechanical properties can be calculated. The local or global mechanical properties determination of a flat test specimens are based on the displacements or changes in a previous stochastic sprayed or natural pattern. The used material for this purpose is cast silicon (Si) based aluminium (Al) component, designated as AlSi7Mg0.3 (Anticorodal-78 dv). The hypoeutectic Al- Si alloy is widely applicable for engine constructions, vehicle and aerospace constructions, shipbuilding, electrical engineering and constructions for food industry. There are many microstructural parameters in a binary system Al- Si alloys, which the mechanical properties can be depended on, for instance phase distribution, Secondary Dendrite Arm Spacing (SDAS), morphology of Si particles (Roundness) and microscopic defects or pores. All these parameters can contribute to enhance the proper mechanical performance (e.g. Strength and ductility) in the Al-Si cast components.
313

Electron beam melting of Alloy 718 : Influence of process parameters on the microstructure

Karimi Neghlani, Paria January 2018 (has links)
Additive manufacturing (AM) is the name given to the technology of building 3D parts by adding layer-by-layer of materials, including metals, plastics, concrete, etc. Of the different types of AM techniques, electron beam melting (EBM), as a powder bed fusion technology, has been used in this study. EBM is used to build parts by melting metallic powders by using a highly intense electron beam as the energy source. Compared to a conventional process, EBM offers enhanced efficiency for the production of customized and specific parts in aerospace, space, and medical fields. In addition, the EBM process is used to produce complex parts for which other technologies would be either expensive or difficult to apply. This thesis has been divided into three sections, starting from a wider window and proceeding to a smaller one. The first section reveals how the position-related parameters (distance between samples, height from build plate, and sample location on build plate) can affect the microstructural characteristics. It has been found that the gap between the samples and the height from the build plate can have significant effects on the defect content and niobium-rich phase fraction. In the second section, through a deeper investigation, the behavior of Alloy 718 during the EBM process as a function of different geometry-related parameters is examined by building single tracks adjacent to each other (track-by-track) andsingle-wall samples (single tracks on top of each other). In this section, the main focus is to understand the effect of successive thermal cycling on microstructural evolution. In the final section, the correlations between the main machine-related parameters (scanning speed, beam current, and focus offset) and the geometrical (melt pool width, track height, re-melted depth, and contact angle) and microstructural (grain structure, niobium-rich phase fraction, and primary dendrite arm spacing) characteristics of a single track of Alloy 718 have been investigated. It has been found that the most influential machine-related parameters are scanning speed and beam current, which have significant effects on the geometry and the microstructure of the single-melted tracks.
314

Raman Spectroscopy Applications to High Energy Materials

Sil, Sanchita January 2014 (has links) (PDF)
Detection of explosives has always been a challenging issue all over the world. Different analytical techniques and instrumentation methods have been explored to obtain a 100% fail proof detector. Some technologies have matured and have been deployed in the field already. However, active research is still being pursued to make the ultimate explosive detection device. The present thesis broadly addresses the development of Raman spectroscopy based techniques for the detection of explosives. Although Raman spectroscopy has technologically developed and has become a regular tool for chemical identification, its use in the field of detection of explosives has been limited. Two aspects of detection were addressed in this thesis. The first part consists of the detection of minute quantities or traces of explosives using a Raman based method. In order to approach this problem, surface enhanced Raman spectroscopy (SERS), an offshoot of Raman spectroscopy was explored. Chapters 2-4 deal with developing efficient SERS substrates. In this endeavour, the first and the most obvious choice as SERS substrates were silver (Ag) nanoparticles (NPs). However, we were exploring methods that could be simple one-pot synthesis methods, cost-effective and without employing strong reducing agents (green). Therefore, Ag NPs were synthesized using biosynthetic route. These nanoparticles were used to study their SERS efficiency. Sub-nano molar concentration of dye as well explosive like trinitrotoluene (TNT) and hexanitrohexaazaisowurtzitane (CL-20) could be obtained for both the clove reduced as well as pepper Ag nanoparticles. Hence Ag NPs are very efficient SERS substrates. In the second part of the work on SERS, bimetallic nanoparticles with core-shell (Agcore-Aushell) architecture were synthesized, characterized and tested for SERS activity. After successful synthesis and characterization of the bimetallic nanoparticles, these were tested for their SERS activities using a dye molecule and an explosive molecule. SERS spectra could be obtained for the bimetallic nanoparticles. It was observed that the sensitivity of these NPs were almost at par with the mono-metallic Ag NPs. In order to bring SERS from laboratory to field, a more practical approach was to prepare solid SERS substrates or SERS substrates on solid platform. In the next chapter, we ventured into the most abundant material which forms the backbone of the organic world, carbon. Various carbonaceous materials ranging from chemically synthesized graphene, graphene oxide, multi-walled carbon nanotube (MWCNT), graphite and activated charcoal were explored as potential substrates for surface enhanced Raman spectroscopic applications. The analytes chosen for this particular study were some fluorescent molecules such as rhodamine B (RB), rhodamine 6G (R6G), crystal violet (CV), Nile blue A (NBA) and a non-fluorescent molecule acetaminophen, commonly known as paracetamol. Enhanced Raman signals were observed for the fluorescent molecules, especially for the molecules whose absorbance maxima are near the excitation wavelength of the laser (514.5 nm). The most interesting outcome of this work was obtaining enhanced Raman signals of nanomolar concentration of R6G on activated charcoal. However, for the non-fluorescent molecule, paracetamol, Raman spectra could not be observed beyond -5 10M concentration for all the carbon substrates including chemically synthesized graphene and MWCNT. This study was crucial in our quest for an ideal SERS substrate. Our observations let us to conclude that chemically synthesized graphene was not the only candidate for the preparation of SERS substrates. Since carbon materials efficiently adsorb and also provide a separate channel for energy decay (fluorescence quenching), even activated charcoal could be employed as a SERS platform. However, carbon alone could not provide an effective solution for the preparation of SERS substrates. Therefore, combining the plasmonic effect of the metal nanoparticles with the efficient adsorption and fluorescence quenching of carbon materials would be ideal. In the next part of the carbon studies, graphene-Ag composites which were either prepared by in situ reduction process or physically mixed were studied for SERS activity. An ideal SERS substrate should possess the following properties: (i) Support plasmon, thereby provide SERS enhancement (ii) Easy to fabricate or synthesize (large scale/bulk) (iii) Ensure high reproducibility and sensitivity (iv) Low false alarm from matrix chemicals (v) Cost effective (vi) Solid substrate (in the form of chip, pellet, slide etc.) Hence, as a final study, carbon silver based composites were explored. R6G was chosen as an analyte again and SERS experiments were conducted. Raman signals at low concentration could be obtained for the carbon-Ag composites as well. In addition, feasibility experiments were also conducted for an explosive molecule, FOX-7. From these preliminary experiments we observed that carbon-metal NP composites can be efficient, cost-effective SERS substrates that will overcome the current issue. The previous chapters dealt with the trace detection of explosives. The next part of the thesis deals with the development of the Raman spectroscopic methods for non-invasive detection of concealed objects. Chapters 4 and 5 primarily focus on explosives detection. Spatially offset Raman spectroscopy (SORS) instrumentation was developed in the laboratory for non-invasive detection solid and liquid explosives. Several experiments were carried out to detect concealed materials inside high density polyethylene (HDPE) containers, coloured glass bottles, envelopes etc. with this technique, Raman signals of materials could be retrieved even within 4 mm thick outer-layer. SORS imaging experiments were also performed on bilayered compounds, tablets etc. However, while performing the SORS experiments, it was observed that due to the restriction in geometry imposed by the method, the signals from the inner-layers could be obtained only up to a certain depth. This posed a serious limitation of SORS for practical scenarios, where the thickness of the outer layer may be tens of mm. In such situation, SORS may not be an effective method. We then performed Raman experiments using a transmission geometry using a series of samples. The transmission Raman (TR) experiments yielded better SNR for the inner (concealed) material as compared to the outer material. Although transmission Raman experiments yielded better signal but these experiments were again geometry dependent, hence, less flexible and TR experiments did not provide information about the position of the underlying materials. In order to obtain complete information, it was necessary to understand photon migration in a multiple scattering medium. It is known that a photon in a multiple scattering medium may be approximated to undergo a random-walk. Statistically, the photon that undergoes multiple scattering in a medium loses its sense of origin (direction), hence, there is a finite probability to observe the exiting photon in any direction. Rayleigh and NIR based imaging modalities have been conducted using this model. Diffuse optical tomographic (DOT) measurements also deal with measuring the photons that have exited the sample after undergoing multiple scattering in a turbid medium. If it was possible to collect the Rayleigh photons or the diffuse photons in DOT experiments, in principle, Raman photons could also be collected from several directions. It was then proposed that if Rayleigh scattered photons can exit at 4π solid angle from a sample, then it can be assumed that some Rayleigh photons may convert to Raman photons, which in turn, shall have a finite probability to exit the sample from all the sides (4π solid angles). This idea of collecting Raman photons has never been discussed before! Thus, as expected based on the above principles, we were able to record Raman scattered photons at all angles and on all sides. This new technique has been termed as ‘Universal Multiple Angle Raman Spectroscopy (UMARS)’. Monte Carlo simulation studies were also performed to understand the distribution of photons in a multiple scattering medium. Simulation studies also revealed that Raman photons exited from all sides of the medium at varying percentages. Hence, several fiber optic probes were designed for illumination and collection to perform the UMARS experiments for samples concealed at depths beyond 20 mm. UMARS was not only applied successfully for the detection of concealed explosives, but also for biologically relevant samples as well. In fact a pharmaceutical tablet as thick as 7 mm was also tested with UMARS and signals could be successfully obtained. Since the UMARS signals were obtained from all possible angles, imaging experiments were also conducted to obtain sample specific information. Frequency-specific images of bilayer materials could be obtained. In the case where one material was concealed within another, the reconstruction of the frequency-specific intensities in a contour plot revealed the position of the concealed layer. One of the most challenging and exciting studies that was conducted was to use UMARS to obtain shapes of hidden materials. Several shapes such as dumbbell, ellipsoid etc were fabricated (made of glass) and were filled with a test chemical, trans-stilbene (TS). This shape was placed inside an outer material like ammonium nitrate (AN) that was taken in a glass beaker. The diameter of the beaker was varied from 25 mm to 60 mm. A series of UMARS measurement was carried out with 10 collection fiber optic probes. The spatial resolution (vertical) was varied from 200 μm to 1 mm. Series of UMARS images were obtained which were then processed and the intensity of the individual fibers were averaged (CCD row pixels) based on the image of the individual fiber on the CCD. The frequency specific intensity of the materials was utilized to reconstruct 2D or a 3D shape. The shapes of the objects could be clearly discerned using UMARS imaging. This marks a major step for the development of UMARS as a 3D imaging modality. UMARS experiments conducted so far have affirmed our belief that this technology can be used as an effective technique for screening solid and liquid samples at airports, railway stations and other entry points. 3D imaging for biomedical diagnostics will provide molecular information in addition to the location and shape of an object inside a tissue such as calcified masses and bones. In the final part of the thesis, 2D Raman correlation spectroscopic method was applied to understand the dynamics of a system that was subjected to external perturbation. In the field of explosive processing and formulations, large batches are generally prepared. However, it is very difficult to ascertain the molecular or structural changes that occur during the processing of these formulations in situ. Analytical methods to monitor the changes online are limited. Raman spectroscopy can be an effective technique for such measurements. This process however, generates a large number of spectra. In such cases, it becomes cumbersome to handle such large number of data and obtain meaningful information. 2D correlation spectroscopy can be applied under such situations. 2D correlation analysis generates essentially two maps, synchronous and asynchronous. In this study, 2D Raman correlation spectroscopy was applied to ammonium nitrate that was subjected to temperature variations. 2D maps were constructed to obtain information about the structural changes associated with temperature. The synchronous map reveals the overall similarity of the intensity changes. Whereas, the 2D asynchronous maps provide the sequence of changes that occur. Based on the set of well defined rules proposed by Isao Noda, the synchronous and the asynchronous correlation maps were analysed. Hence, generalized 2D correlation spectroscopy can be extended to any kind of perturbation and will prove useful in understanding the structural dynamics. The objective of the thesis was to explore various facets of Raman spectroscopy that would be useful in the field of high energy materials specifically in the detection of explosives. Attempts were made for the development of trace detection of explosives using Raman based technique, SERS. In addition, bulk detection of concealed explosives was performed non-invasively using SORS and UMARS. In the field of high energy materials, these techniques will find immense applications. Raman spectroscopy, as we saw is a very important technique that can be used as a stand-alone method and can also be interfaced with other analytical or imaging modalities. This treatise is an example where the strength of this powerful spectroscopic method has been explored to some extent.
315

Daňové příjmy obcí v době hospodářské krize / Municipal tax revenues during the economic crisis.

Hartmann, Petr January 2010 (has links)
The thesis analyses the real estate tax in the municipalities of Řevnice, Lety, Dobřichovice, Čisovice and Všenory during the period 2009 -- 2011. It focuses on the legal powers by which the municipalities may affect the amount of property tax revenue and the extent of their application. Moreover, there is an analysis evaluating the possibility of gaining an additional income from the property tax, in order to offset the deficit caused by the financial or economic crisis. The thesis is divided into four chapters. In the first chapter, there are listed the characteristics of income municipalities, the second chapter is devoted to property tax with an emphasis on the legislative framework; in the third chapter, there is an analysis of property tax revenue in the above listed municipalities, and the final chapter presents and summarizes the analysis results.
316

Modélisation et analyse des transferts dans les échangeurs à plaques et ailettes à pas décalés : intensification par optimisation géométrique et génération de vorticité / Modeling and analysis of transfer in offset strip fins heat exchangers : heat transfer intensification by geometry optimization and vorticity generation

Toubiana, Ephraïm 20 January 2015 (has links)
Ce mémoire de thèse traite de l’analyse, l’intensification et l’optimisation du transfert thermique convectif dans les échangeurs à plaques et ailettes à pas décalés utilisés notamment dans le domaine automobile comme refroidisseurs d’air de suralimentation. Deux approches complémentaires sont abordées dans cette étude : des simulations numériques visant à l’analyse fine locale des caractéristiques de l’écoulement et des mécanismes de transfert, et une modélisation de type nodale permettant une caractérisation globale des performances thermo-aérauliques. Sur la gamme de Reynolds considérée différentes modélisations de la turbulence sont mises en œuvre et comparées. Ainsi des simulations aux grandes échelles (LES) permettent de qualifier des simulations de type RANS classiquement utilisées jusque-là : de fortes différences tant au niveau structuration de l’écoulement qu’au niveau performances globales sont ainsi mises en évidence selon le régime d’écoulement considéré. La mise au point d’un modèle nodal est ensuite abordée dans le but de mener des optimisations de géométries d’échangeurs non-conventionnels à pas décalés. Les différents scénarii d’optimisation considérés montrent l’intérêt de cette approche autorisant l’évaluation d’un nombre élevé de configurations géométriques. Dans une dernière partie une nouvelle géométrie innovante permettant de générer des tourbillons longitudinaux sur ce type d’ailettes est proposée et étudiée. / This thesis deals with the analysis, intensification and optimization of convective heat transfer in offset strip fins (OSF) heat exchangers used, for example, in the automotive field as water-cooled charge air coolers. Two complementary approaches are carried out in this study: CFD simulations to perform local fine analysis of the flow characteristics and transfer mechanisms, and a nodal type modeling allowing calculation of global aerothermal performance. Over the range of Reynolds numbers considered, different turbulence modeling approaches are implemented and compared: Large Eddy Simulations (LES) and RANS simulations which are usually used. The qualification of the RANS models shows that strong differences, both in the flow structure and at the overall performance evaluation level, may beobserved, depending on the flow regime considered. Then the development of a nodal model is presented. It aims at carrying out rapid optimization of geometries of unconventional OSF heat exchangers. The various optimization scenarios considered show the interest of this approach allowing the evaluation of a large number of geometric configurations. In a last part, an innovative new geometry that generates longitudinal vortices on this type of fins is proposed and studied.
317

Analýza chování a metod navrhování smykových stěn lehkých dřevěných konstrukcí / Analysis of structural response and design methods for shear walls in light timber frame structures

Zajíc, Michal Unknown Date (has links)
The prediction of shear capacity of light timber frame walls in a multi-storey arrangement is the main focus of this dissertation. The available theories neglect to account for the fact that the shear resistance of the walls may depend on the actual vertical position of the applied horizontal force. However, the actual arrangement of the structures in practice introduces a vertical offset between the wall head height and the position of the resultant of the external horizontal forces. Thus, the horizontal shear force is accompanied by dependent overturning moment. Solving such a problem for partially anchored walls inevitably leads to an iterative calculation. The aim is to provide a comprehensible and less calculation-intensive procedure for multi-storey buildings that would be competitive with existing simplified methods. A model derived from lower bound plastic method was successfully put to the test in a parametric study and compared with limited test results. The results show that the capacities predicted using the novel method compare favourably with the results obtained from traditional theories using a more complicated iterative process. Therefore, the presented single-step approach may be appealing to the industry. A test program was formulated to understand better the implications of the recommended best practice of introducing gaps between sheathing panels. It was set to experimentally verify the difference in the shear capacity for setups with and without gaps between the sheathing panels. The significance of this study is that it informs the industry that the manufacturers’ recommendation to incorporate a gap between sheathing panels would not compromise the structural integrity. Considering the model uncertainty and the safety margins, the introduction of gaps does not alter the strength or stiffness of the wall.
318

Autentizace RF vysílačů na základě nedokonalostí rádiového řetězce / RF transmitter authentication based on front-end impairments

Youssefová, Kristina January 2021 (has links)
Tato práce se zaměřuje na klasifikaci vysokofrekvenčních vysílačů v závislosti na nedokonalostech jejich komponent pomocí algoritmu strojového učení. Práce je rozdělena na dvě části - teoretickou a praktickou.V teoretické části je nejprve popsána základní struktura vysílače s přímou konverzí a jsou uvedeny nedokonalosti rádiového front-endu, které mohou být využity ke klasifikaci. Dále jsou vysvětleny vybrané metody strojového učení s učitelem, zejména metoda support vector machines a neuronové sítě. Praktická část se zabývá implementací a dosaženými výsledky těchto dvou metod v prostředí MATLAB na problému klasifikace rádiových front-endů.
319

Zesilovač pro tenzometry / Strain Gage amplifier

Kneblík, Adam January 2008 (has links)
The thesis deals about method of gain signals from strain gauge bridges. There are mentioned some signal conditioning methods for bridges amplifiers and charactered their properties. In the next part of this thesis are calculated the amplifier errors for various temperature. There are projected individual variants of strain gage amplifiers (instrumentation amplifier AD524, isolation amplifier, switched capacitor based instrumentation amplifier), their properties are compared with strain gage amplifier Vishay P-3500.
320

Optimální detekce hranic QRS komplexu v EKG signálech / Optimal detection of QRS boundaries in ECG signals

Spáčil, Jakub January 2010 (has links)
This diploma thesis deals with location optimal wavelet for detecton charakterics points of QRS complex in ECG signals. The first part of this thesis deals with description of heart, genesis of electric signals on heart and problem of noise. The second part describes the wavelet transform and the designed program and the third part evaluate detection results. The created program is working with 10 ECG signals from the CSE database and is testing 12 different mother wavelets. The program was developed in Matlab environment and is based on the finding zero-points in the transformed signal.

Page generated in 0.0442 seconds