Spelling suggestions: "subject:"optimisation mathématiques""
41 |
Analyse et optimisation d'efficacité de réseaux manufacturiers complexesJlili, Mohamed Malek 19 April 2018 (has links)
Les travaux de ce mémoire portent sur l'analyse et la conception optimale de systèmes manufacturiers composés de machines non fiables. Les systèmes considérés peuvent opérer selon une structure réseau d’assemblage/désassemblage. Des stocks tampons sont placés entre les machines pour les découpler les unes des autres. Ces machines peuvent opérer en mode de fonctionnement dégradé. Chaque machine est modélisée comme un système à trois états : fonctionnement nominal, panne totale et mode dégradé. On considère que le mode de fonctionnement dégradé affecte uniquement le taux de production nominal des machines et non la qualité des pièces produites. Afin d’évaluer le taux de production d’un tel réseau manufacturier à machines multi-états (dit complexe), une méthode d’évaluation analytique est tout d’abord explorée. Cette méthode consiste à remplacer chaque machine par une machine équivalente à deux états, puis à appliquer ensuite une des méthodes existantes pour les réseaux avec machines binaires. Après avoir découvert que cette méthode est imprécise même dans le cas simple de deux machines multi-états séparées par un stock, nous avons utilisé une simulation à base du logiciel Simio en vue d’une conception optimale du réseau. Dans cette conception, il est question de faire une sélection conjointe des technologies des machines et des tailles de stocks. L’objectif de l’optimisation est de maximiser le taux de production sous des contraintes de budget. La plupart des travaux existants considèrent le problème d’allocation des stocks tampons pour des lignes séries ou séries-parallèles, en considérant que les technologies des machines sont déjà choisies. L’extension ainsi développée est validée en utilisant différentes instances générées aléatoirement. Pour ce faire, le modèle de simulation développé est couplé à deux méthodes d’optimisation. La première méthode utilise l’outil d'optimisation OptQuest. La seconde méthode est une nouvelle heuristique basée sur un algorithme génétique (AG). Dans chacune des méthodes, l’outil d’optimisation se sert de l’estimation du taux de production effectuée par l’outil de simulation dan #s sa fonction d’objectif. Notre nouvelle méthode (simulation/AG) est comparée à une approche couplant une méthode analytique à un AG dans le cas de machines binaires. Les résultats numériques obtenus illustrent l’efficacité de notre méthode au niveau de la qualité des solutions, au détriment d’un temps de calcul moins performant. / This thesis focuses on the analysis and optimal design of manufacturing systems composed of unreliable machinery. The considered systems can operate in an assembly / disassembly structure. Buffer stocks are placed between the machines in order to decouple them from each other. These machines can operate in degraded mode. Each machine is represented as a system with three states: nominal operation, blackout and a degraded mode. We consider that the degraded mode affects only the nominal production rate of machines and not the quality of the parts produced. To assess the rate of production of such a manufacturing system with multi-state machine (called complex), an analytical method is first explored. This method consists on replacing each machine by an equivalent one with two states, and then applying one of the classical methods for networks with binary state machines. After discovering the lack of precision of this method, we used a simulation method based on the software Simio for the optimal design of networks with multi-state machines. In this design, it is about making a joint selection of technologies and buffer sizes between machines. The objective of the optimization is to maximize the rate of production under budget constraints. Most existing works consider the problem of allocating buffer stocks for serial lines or series-parallel when machine technologies are already chosen. Our method is developed and validated using different randomly generated instances. To do this, the developed simulation model is coupled with two optimization methods. The first method uses the OptQuest optimization tool. The second method is a new heuristic based on a genetic algorithm (GA). In each method, the optimizer uses the production rate estimation carried out by the simulation tool in its objective function. Our new method (simulation / GA) is compared to an approach coupling an analytical method to a GA in the case of binary machines. The numerical results illustrate the effectiveness of our method in terms of solution quality at the expense of the less efficient computation time.
|
42 |
Contributions to optimal and reactive vision-based trajectory generation for a quadrotor UAV / Contributions à la génération de trajectoires optimales et réactives basées vision pour un quadrirotorPenin, Bryan 11 December 2018 (has links)
La vision représente un des plus importants signaux en robotique. Une caméra monoculaire peut fournir de riches informations visuelles à une fréquence raisonnable pouvant être utilisées pour la commande, l’estimation d’état ou la navigation dans des environnements inconnus par exemple. Il est cependant nécessaire de respecter des contraintes visuelles spécifiques telles que la visibilité de mesures images et les occultations durant le mouvement afin de garder certaines cibles visuelles dans le champ de vision. Les quadrirotors sont dotés de capacités de mouvement très réactives du fait de leur structure compacte et de la configuration des moteurs. De plus, la vision par une caméra embarquée (fixe) va subir des rotations dues au sous-actionnement du système. Dans cette thèsenous voulons bénéficier de l’agilité du quadrirotor pour réaliser plusieurs tâches de navigation basées vision. Nous supposons que l’estimation d’état repose uniquement sur la fusion capteurs d’une centrale inertielle (IMU) et d’une caméra monoculaire qui fournit des estimations de pose précises. Les contraintes visuelles sont donc critiques et difficiles dans un tel contexte. Dans cette thèse nous exploitons l’optimisation numérique pour générer des trajectoires faisables satisfaisant un certain nombre de contraintes d’état, d’entrées et visuelles non linéaires. A l’aide la platitude différentielle et de la paramétrisation par des B-splines nous proposons une stratégie de replanification performante inspirée de la commande prédictive pour générer des trajectoires lisses et agiles. Enfin, nous présentons un algorithme de planification en temps minimum qui supporte des pertes de visibilité intermittentes afin de naviguer dans des environnements encombrés plus vastes. Cette contribution porte l’incertitude de l’estimation d’état au niveau de la planification pour produire des trajectoires robustes et sûres. Les développements théoriques discutés dans cette thèse sont corroborés par des simulations et expériences en utilisant un quadrirotor. Les résultats reportés montrent l’efficacité des techniques proposées. / Vision constitutes one of the most important cues in robotics. A single monocular camera can provide rich visual information at a reasonable rate that can be used as a feedback for control, state estimation of mobile robots or safe navigation in unknown environments for instance. However, it is necessary to satisfy particular visual constraints on the image such as visibility and occlusion constraints during motion to keep some visual targets visible. Quadrotors are endowed with very reactive motion capabilities due to their compact structure and motor configuration. Moreover, vision from a (fixed) on-board camera will suffer from rotation motions due to the system underactuation. In this thesis, we want to benefit from the system aggressiveness to perform several vision-based navigation tasks. We assume state estimation relies solely on sensor fusion of an onboard inertial measurement unit (IMU) and a monocular camera that provides reliable pose estimates. Therefore, visual constraints are challenging and critical in this context. In this thesis we exploit numerical optimization to design feasible trajectories satisfying several state, input and visual nonlinear constraints. With the help of differential flatness and B-spline parametrization we will propose an efficient replanning strategy inspired form Model Predictive Control to generate smooth and agile trajectories. Finally, we propose a minimum-time planning algorithm that handles intermittent visibility losses in order to navigate in larger cluttered environments. This contribution brings state estimation uncertainty at the planning stage to produce robust and safe trajectories. All the theoretical developments discussed in this thesis are corroborated by simulations and experiments run by using a quadrotor UAV. The reported results show the effectiveness of proposed techniques.
|
43 |
Modélisation automatique et simulation de parcours de soins à partir de bases de données de santé / Process discovery, analysis and simulation of clinical pathways using health-care dataProdel, Martin 10 April 2017 (has links)
Les deux dernières décennies ont été marquées par une augmentation significative des données collectées dans les systèmes d'informations. Cette masse de données contient des informations riches et peu exploitées. Cette réalité s’applique au secteur de la santé où l'informatisation est un enjeu pour l’amélioration de la qualité des soins. Les méthodes existantes dans les domaines de l'extraction de processus, de l'exploration de données et de la modélisation mathématique ne parviennent pas à gérer des données aussi hétérogènes et volumineuses que celles de la santé. Notre objectif est de développer une méthodologie complète pour transformer des données de santé brutes en modèles de simulation des parcours de soins cliniques. Nous introduisons d'abord un cadre mathématique dédié à la découverte de modèles décrivant les parcours de soin, en combinant optimisation combinatoire et Process Mining. Ensuite, nous enrichissons ce modèle par l’utilisation conjointe d’un algorithme d’alignement de séquences et de techniques classiques de Data Mining. Notre approche est capable de gérer des données bruitées et de grande taille. Enfin, nous proposons une procédure pour la conversion automatique d'un modèle descriptif des parcours de soins en un modèle de simulation dynamique. Après validation, le modèle obtenu est exécuté pour effectuer des analyses de sensibilité et évaluer de nouveaux scénarios. Un cas d’étude sur les maladies cardiovasculaires est présenté, avec l’utilisation de la base nationale des hospitalisations entre 2006 et 2015. La méthodologie présentée dans cette thèse est réutilisable dans d'autres aires thérapeutiques et sur d'autres sources de données de santé. / During the last two decades, the amount of data collected in Information Systems has drastically increased. This large amount of data is highly valuable. This reality applies to health-care where the computerization is still an ongoing process. Existing methods from the fields of process mining, data mining and mathematical modeling cannot handle large-sized and variable event logs. Our goal is to develop an extensive methodology to turn health data from event logs into simulation models of clinical pathways. We first introduce a mathematical framework to discover optimal process models. Our approach shows the benefits of combining combinatorial optimization and process mining techniques. Then, we enrich the discovered model with additional data from the log. An innovative combination of a sequence alignment algorithm and of classical data mining techniques is used to analyse path choices within long-term clinical pathways. The approach is suitable for noisy and large logs. Finally, we propose an automatic procedure to convert static models of clinical pathways into dynamic simulation models. The resulting models perform sensitivity analyses to quantify the impact of determinant factors on several key performance indicators related to care processes. They are also used to evaluate what-if scenarios. The presented methodology was proven to be highly reusable on various medical fields and on any source of event logs. Using the national French database of all the hospital events from 2006 to 2015, an extensive case study on cardiovascular diseases is presented to show the efficiency of the proposed framework.
|
44 |
Modèles réduits et hybrides de réseaux de réactions biochimiques : applications à la modélisation du cycle cellulaireNoël, Vincent 20 December 2012 (has links) (PDF)
La modélisation des systèmes biologiques, particulièrement à l'échelle moléculaire, est une problématique nouvelle, issue de l'apport des techniques à haut débit. Le défi en modélisation mathématique est de pouvoir analyser le comportement de ces systèmes dynamiques de très grande dimension. L'enjeu est de taille, car la compréhension du fonctionnement normal et pathologique des cellules au niveau moléculaire, ouvre la voie aux thérapies ciblés pour des maladies systémiques telles que le cancer. Pour s'affranchir des problèmes liés à l'imprécision des valeurs des paramètres, cette thèse propose de travailler avec des ordres, plutôt qu'avec des valeurs précises de paramètres. Ceci conduit naturellement à l'utilisation de l'analyse tropicale pour obtenir des modèles réduits et hybrides. Ces développements ouvrent des nouvelles perspectives sur le plan mathématique, concernant l'étude de systèmes dynamiques. Cette étude propose quelques résultats concernant la tropicalisation des systèmes d'équations différentielles. Une autre partie de la thèse est consacrée à l'étude numérique des systèmes hybrides. La question ici est comment construire un modèle hybride qui reproduit un comportement expérimental donné, aussi comment identifier un modèle hybride à partir de séries temporelles. Cette thèse propose un algorithme original d'identification. Cet algorithme sépare le problème en deux sous-problèmes, notamment l'identification des paramètres des modes et l'identification des paramètres de commande des modes. Des applications à relativement grande échelle sont abordées par cette approche, notamment un modèle de cycle cellulaire chez les mammifères.
|
45 |
Constrained, non-linear, derivative-free, parallel optimization of continuous, high computing load, noisy objective functionsVanden Berghen, Frank 28 June 2004 (has links)
The main result is a new original algorithm: CONDOR ("COnstrained, Non-linear, Direct, parallel Optimization using trust Region method for high-computing load, noisy functions"). The aim of this algorithm is to find the minimum x* of an objective function F(x) (x is a vector whose dimension is between 1 and 150) using the least number of function evaluations of F(x). It is assumed that the dominant computing cost of the optimization process is the time needed to evaluate the objective function F(x) (One evaluation can range from 2 minutes to 2 days). The algorithm will try to minimize the number of evaluations of F(x), at the cost of a huge amount of routine work. CONDOR is a derivate-free optimization tool (i.e. the derivatives of F(x) are not required. The only information needed about the objective function is a simple method (written in Fortran, C++,) or a program (a Unix, Windows, Solaris, executable) which can evaluate the objective function F(x) at a given point x. The algorithm has been specially developed to be very robust against noise inside the evaluation of the objective function F(x). This hypotheses are very general, the algorithm can thus be applied on a vast number of situations. CONDOR is able to use several CPU's in a cluster of computers. Different computer architectures can be mixed together and used simultaneously to deliver a huge computing power. The optimizer will make simultaneous evaluations of the objective function F(x) on the available CPU's to speed up the optimization process. The experimental results are very encouraging and validate the quality of the approach: CONDOR outperforms many commercial, high-end optimizer and it might be the fastest optimizer in its category (fastest in terms of number of function evaluations). When several CPU's are used, the performances of CONDOR are currently unmatched (may 2004). CONDOR has been used during the METHOD project to optimize the shape of the blades inside a Centrifugal Compressor (METHOD stands for Achievement Of Maximum Efficiency For Process Centrifugal Compressors THrough New Techniques Of Design). In this project, the objective function is based on a 3D-CFD (computation fluid dynamic) code which simulates the flow of the gas inside the compressor. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
46 |
Chance-Constrained Programming Approaches for Staffing and Shift-Scheduling Problems with Uncertain Forecasts : application to Call Centers / Approches de programmation en contraintes en probabilité pour les problèmes de dimensionnement et planification avec incertitude de la demande : application aux centres d'appelsExcoffier, Mathilde 30 September 2015 (has links)
Le problème de dimensionnement et planification d'agents en centre d'appels consiste à déterminer sur une période le nombre d'interlocuteurs requis afin d'atteindre la qualité de service exigée et minimiser les coûts induits. Ce sujet fait l'objet d'un intérêt croissant pour son intérêt théorique mais aussi pour l'impact applicatif qu'il peut avoir. Le but de cette thèse est d'établir des approches en contraintes en probabilités en considérant l'incertitude de la demande.Tout d'abord, la thèse présente un modèle en problème d'optimisation stochastique avec contrainte en probabilité jointe traitant la problématique complète en une étape afin d'obtenir un programme facile à résoudre. Une approche basée sur l'idée de continuité est proposée grâce à des lois de probabilité continues, une nouvelle relation entre les taux d'arrivées et les besoins théoriques et la linéarisation de contraintes. La répartition du risque global est faite pendant le processus d'optimisation, permettant une solution au coût réduit. Ces solutions résultantes respectent le niveau de risque tout en diminuant le coût par rapport à d'autres approches.De plus, le modèle en une étape est étendu pour améliorer sa représentation de la réalité. D'une part, le modèle de file d'attente est amélioré et inclus la patience limitée des clients. D'autre part, une nouvelle expression de l'incertitude est proposée pour prendre la dépendance des périodes en compte.Enfin, une nouvelle représentation de l'incertitude est considérée. L'approche distributionally robust permet de modéliser le problème sous l'hypothèse que la loi de probabilité adéquate est inconnue et fait partie d'un ensemble de lois, défini par une moyenne et une variance données. Le problème est modélisé par une contrainte en probabilité jointe. Le risque à chaque période est définie par une variable à optimiser.Un problème déterministe équivalent est proposé et des approximations linéaires permettent d'obtenir une formulation d'optimisation linéaire. / The staffing and shift-scheduling problems in call centers consist in deciding how many agents handling the calls should be assigned to work during a given period in order to reach the required Quality of Service and minimize the costs. These problems are subject to a growing interest, both for their interesting theoritical formulation and their possible applicative effects. This thesis aims at proposing chance-constrained approaches considering uncertainty on demand forecasts.First, this thesis proposes a model solving the problems in one step through a joint chance-constrained stochastic program, providing a cost-reducing solution. A continuous-based approach leading to an easily-tractable optimization program is formulated with random variables following continuous distributions, a new continuous relation between arrival rates and theoritical real agent numbers and constraint linearizations. The global risk level is dynamically shared among the periods during the optimization process, providing reduced-cost solution. The resulting solutions respect the targeted risk level while reducing the cost compared to other approaches.Moreover, this model is extended so that it provides a better representation of real situations. First, the queuing system model is improved and consider the limited patience of customers. Second, another formulation of uncertainty is proposed so that the period correlation is considered.Finally, another uncertainty representation is proposed. The distributionally robust approach provides a formulation while assuming that the correct probability distribution is unknown and belongs to a set of possible distributions defined by given mean and variance. The problem is formulated with a joint chance constraint. The risk at each period is a decision variable to be optimized. A deterministic equivalent problem is proposed. An easily-tractable mixed-integer linear formulation is obtained through piecewise linearizations.
|
Page generated in 0.0965 seconds