• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 2
  • Tagged with
  • 26
  • 26
  • 26
  • 26
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optical parametric amplification with periodically poled KTiOPO4

Fragemann, Anna January 2005 (has links)
This thesis explores the use of engineered nonlinear crystals from the KTiOPO4 (KTP) family as the gain material in optical parametric amplifiers (OPAs), with the aim to achieve more knowledge about the benefits and limitations of these devices. The work aims further at extending the possible applications of OPAs by constructing and investigating several efficient and well performing amplifiers. An OPA consists of a strong pump source, which transfers its energy to a weak seed beam while propagating through a nonlinear crystal. The crystals employed in this work are members of the KTP family, which are attractive due to their large nonlinear coefficients, high resistance to damage and wide transparency range. The flexibility of OPAs with respect to different wavelength regions and pulse regimes was examined by employing various dissimilar seed and pump sources. The possibility to adapt an OPA to a specific pump and seed wavelength and achieve efficient energy conversion between the beams, originates from quasi-phasematching, which is achieved in periodically poled (PP) nonlinear crystals. Quasi-phasematched samples can be obtained by changing the position of certain atoms in a ferroelectric crystal and thereby reversing the spontaneous polarisation. In this thesis several material properties of PP crystals from the KTP family were examined. The wavelength and temperature dispersion of the refractive index were determined for PP RbTiOPO4, which is essential for future use of this material. Another experiment helped to increase the insight into the volumes close to domain walls in PP crystals Further, several OPAs were built and their ability to efficiently amplify the seed beam without changing its spectral or spatial properties was studied. Small signal gains of up to 55 dB and conversion efficiencies of more than 35 % were achieved for single pass arrangements employing 8 mm long PPKTP crystals. Apart from constructing three setups, which generated powerful nanosecond, picosecond and femtosecond pulses, the possibility to amplify broadband signals was investigated. An increase of the OPA bandwidth by a factor of approximately three was achieved in a noncollinear configuration. / QC 20101013
12

Optical Spectroscopy of GaN/Al(Ga)N Quantum Dots Grown by Molecular Beam Epitaxy

Yu, Kuan-Hung January 2009 (has links)
GaN quantum dots grown by molecular beam epitaxy are examined by micro-photoluminescence. The exciton and biexciton emission are identified successfully by power-dependence measurement. With two different samples, it can be deduced that the linewidth of the peaks is narrower in the thicker deposited layer of GaN. The size of the GaN quantum dots is responsible for the binding energy of biexciton (EbXX); EbXX decreases with increasing size of GaN quantum dots. Under polarization studies, polar plot shows that emission is strongly linear polarized. In particular, the orientation of polarization vector is not related to any specific crystallography orientation. The polarization splitting of fine-structure is not able to resolve due to limited resolution of the system. The emission peaks can be detected up to 80 K. The curves of transition energy with respect to temperature are S-shaped. Strain effect and screening of electric field account for  blueshift of transition energy, whereas Varshni equation stands for redshifting. Both blueshifting and redshifting are compensated at temperature ranging from 4 K to 40 K.
13

Numerical calculations of optical structures using FEM

Wiklund, Henrik January 2006 (has links)
Complex surface structures in nature often have remarkable optical properties. By understanding the origin of these properties, such structures may be utilized in metamaterials, giving possibilities to create materials with new specific optical properties. To simplify the optical analysis of these naturally developed surface structures there is a need to assist data analysis and analytical calculations with numerical calculations. In this work an application tool for numerical calculations of optical properties of surface structures, such as reflectances and ellipsometric angles, has been developed based on finite element methods (FEM). The data obtained from the application tool has been verified by comparison to analytical expressions in a thorough way, starting with reflection from the simplest of interfaces stepwise increasing the complexity of the surfaces. The application tool were developed within the electromagnetic module of Comsol Multiphysics and used the script language to perform post-process calculations on the obtained electromagnetic fields. The data obtained from this application tool are given in such way that easily allows for comparison with data received from spectroscopic ellipsometry measurements.
14

Optical parametric amplification with periodically poled KTiOPO<sub>4</sub>

Fragemann, Anna January 2005 (has links)
<p>This thesis explores the use of engineered nonlinear crystals from the KTiOPO4 (KTP) family as the gain material in optical parametric amplifiers (OPAs), with the aim to achieve more knowledge about the benefits and limitations of these devices. The work aims further at extending the possible applications of OPAs by constructing and investigating several efficient and well performing amplifiers.</p><p>An OPA consists of a strong pump source, which transfers its energy to a weak seed beam while propagating through a nonlinear crystal. The crystals employed in this work are members of the KTP family, which are attractive due to their large nonlinear coefficients, high resistance to damage and wide transparency range. The flexibility of OPAs with respect to different wavelength regions and pulse regimes was examined by employing various dissimilar seed and pump sources.</p><p>The possibility to adapt an OPA to a specific pump and seed wavelength and achieve efficient energy conversion between the beams, originates from quasi-phasematching, which is achieved in periodically poled (PP) nonlinear crystals. Quasi-phasematched samples can be obtained by changing the position of certain atoms in a ferroelectric crystal and thereby reversing the spontaneous polarisation.</p><p>In this thesis several material properties of PP crystals from the KTP family were examined. The wavelength and temperature dispersion of the refractive index were determined for PP RbTiOPO4, which is essential for future use of this material. Another experiment helped to increase the insight into the volumes close to domain walls in PP crystals</p><p>Further, several OPAs were built and their ability to efficiently amplify the seed beam without changing its spectral or spatial properties was studied. Small signal gains of up to 55 dB and conversion efficiencies of more than 35 % were achieved for single pass arrangements employing 8 mm long PPKTP crystals. Apart from constructing three setups, which generated powerful nanosecond, picosecond and femtosecond pulses, the possibility to amplify broadband signals was investigated. An increase of the OPA bandwidth by a factor of approximately three was achieved in a noncollinear configuration.</p>
15

Synthesis and Optical Properties of ZnO Nanostructures

Yang, Li-Li January 2008 (has links)
<p>One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices. Therefore, it is really important to realize the controllable growth of one-dimensional ZnO nanostructures and investigate their properties. The main points for this thesis are not only to successfully realize the controllable growth of ZnO nonawires, nanorods and quantum dots (QDs), and also investigate the structure and optical properties in detail by the methods of scan electron microscope(SEM), transmission electron microscope(TEM), resonant Raman, photoluminescence(PL) and low-temperature time resolved PL spectrum.</p><p>to grown ZnO nanorod arrays (ZNAs) on Si substrates. Firstly, the effects of ZnO nanoparticles, pH value of chemical solution, angel θ between substrate and beaker bottom on the structures of the samples were symmetrically investigated and the optimized growth condition to grow ZNAs can be concluded as follows: seed layer of ZnO nanoparticles, pH=6 and <em>θ</em>=70°. On the basis of these, the diameter of ZNAs was well controlled from 150nm~40nm through adjusting the diameter and density of the ZnO nanoparticles pretreated on the Si substrates. The experimental results indicated that both diameter and density of ZnO nanoparticles on the substrates determined the diameter of ZNAs. But when the density is higher than the critical value of 2.3×10<sup>8</sup>cm<sup>-2</sup>, the density will become the dominant factor to determine the diameter of ZNAs.</p><p>One the other hand, the optical properties of ZNAs were investigated in detail. The Raman and photoluminescence (PL) results showed that after an annealing treatment around 500oC in air atmosphere, the crystal structure and optical properties became much better due to the decrease of surface defects. The resonant Raman measurements excited by 351.1nm not only revealed that the surface defects play a significant role in the as-grown sample, but also suggested that the strong intensity increase of some Raman scatterings was due to both outgoing resonant Raman scattering effect and deep level defects scattering contribution for ZnO nanorods annealed from 500°C to 700°C. It is the first time to the best of our knowledge that the Raman measurements can be used to monitor the change of surface defects and deep level defects in the CBD grown ZnO nanorods. We have also presented, for the first time, a time resolved PL study in CBD grown ZnO nanorods with different diameters. The results show that the decay time of the excitons in the nanorods strongly depends on the diameter of the nanorods. The altered decay time is mainly due to the surface recombination process. The effective time constant related to the surface recombination velocity was deduced. A thermal treatment under 500°C will suppress the surface recombination channel, resulting in an improvement of the optical quality for the ZnO nanorods.</p><p>This thesis not only provides the effective way to control the size of ZNAs, but also obtains some beneficial results in aspects of their optical properties, which builds theoretical and experimental foundation for much better and broader applications of one-dimensional ZnO nanostructures.</p>
16

Synthesis and Optical Properties of ZnO Nanostructures

Yang, Li-Li January 2008 (has links)
One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices. Therefore, it is really important to realize the controllable growth of one-dimensional ZnO nanostructures and investigate their properties. The main points for this thesis are not only to successfully realize the controllable growth of ZnO nonawires, nanorods and quantum dots (QDs), and also investigate the structure and optical properties in detail by the methods of scan electron microscope(SEM), transmission electron microscope(TEM), resonant Raman, photoluminescence(PL) and low-temperature time resolved PL spectrum. to grown ZnO nanorod arrays (ZNAs) on Si substrates. Firstly, the effects of ZnO nanoparticles, pH value of chemical solution, angel θ between substrate and beaker bottom on the structures of the samples were symmetrically investigated and the optimized growth condition to grow ZNAs can be concluded as follows: seed layer of ZnO nanoparticles, pH=6 and θ=70°. On the basis of these, the diameter of ZNAs was well controlled from 150nm~40nm through adjusting the diameter and density of the ZnO nanoparticles pretreated on the Si substrates. The experimental results indicated that both diameter and density of ZnO nanoparticles on the substrates determined the diameter of ZNAs. But when the density is higher than the critical value of 2.3×108cm-2, the density will become the dominant factor to determine the diameter of ZNAs. One the other hand, the optical properties of ZNAs were investigated in detail. The Raman and photoluminescence (PL) results showed that after an annealing treatment around 500oC in air atmosphere, the crystal structure and optical properties became much better due to the decrease of surface defects. The resonant Raman measurements excited by 351.1nm not only revealed that the surface defects play a significant role in the as-grown sample, but also suggested that the strong intensity increase of some Raman scatterings was due to both outgoing resonant Raman scattering effect and deep level defects scattering contribution for ZnO nanorods annealed from 500°C to 700°C. It is the first time to the best of our knowledge that the Raman measurements can be used to monitor the change of surface defects and deep level defects in the CBD grown ZnO nanorods. We have also presented, for the first time, a time resolved PL study in CBD grown ZnO nanorods with different diameters. The results show that the decay time of the excitons in the nanorods strongly depends on the diameter of the nanorods. The altered decay time is mainly due to the surface recombination process. The effective time constant related to the surface recombination velocity was deduced. A thermal treatment under 500°C will suppress the surface recombination channel, resulting in an improvement of the optical quality for the ZnO nanorods. This thesis not only provides the effective way to control the size of ZNAs, but also obtains some beneficial results in aspects of their optical properties, which builds theoretical and experimental foundation for much better and broader applications of one-dimensional ZnO nanostructures.
17

Design of a compact wavefront sensor for measurements on the human eye / Design av en kompakt vågfronssensor för mätningar på det mänskliga ögat

Börjeson, Charlie January 2020 (has links)
Wavefront sensors for measurements on human eyes are usually large, expensive and difficult to move. A compact wavefront sensor would be more cost-effective and versatile as is could be used in multiple systems. The aim of this thesis was to produce a more compact and portable wavefront sensor. A shorter telescope design for the wavefront sensor was proposed and checked theoretically and with computer simulations. An experimental arrangement comparing the proposed telescope design with a conventional telescope design was constructed. A compact wavefront sensor was built using off-the-shelf components and a few modified components. Tests with the compact wavefront sensor were made both on eye models and on human eyes. The compact wavefront sensor correctly measured the refractive errors of two eye models. It was also possible to perform measurements on human eyes, both in the central and peripheral visual fields, and higher order aberrations were confirmed. For positioning human eyes at the correct distance from the wavefront sensor an additional pupil camera was needed, which was not included in the system. Future improvements for the compact wavefront sensor are discussed. / Vågfrontssensorer för mätningar på ögon är ofta mycket stora, dyra och svåra att transportera. En kompakt vågfrontssensor skulle vara kostnadseffektiv och flexibel eftersom den skulle kunna användas i flera olika system. Målet med detta examensarbete var att producera en mer kompakt och transportabel vågfrontssensor. En kortare teleskopvariant föreslogs och analyserades både teoretiskt och med datorsimuleringar. En experimentell uppsättning gjordes också för att jämföra den kortare teleskopdesignen med ett sedvanligt vågfrontssensorteleskop. En kompakt vågfrontssensor byggdes med standardkomponenter samt med några modifierade standardkomponenter. Tester med den kompakta vågfrontssensorn gjordes både på ögonmodeller och mänskliga ögon. Den kompakta vågfrontssensorn gav korrekta mätvärden på brytningsfelen på ögonmodellerna. Det gick bra att genomföra mätningar på mänskliga ögon, både i centrala och perifera synfältet, och högre ordningens aberrationer bekräftades. För att placera mänskliga ögon på korrekt avstånd från vågfrontssensorn krävdes en extra pupillkamera, som inte var inkluderad i den kompakta vågfrontssensorn. Framtida förbättringar för den kompakta vågfrontssensorn diskuteras.
18

Optical Characterization and Optimization of Display Components : Some Applications to Liquid-Crystal-Based and Electrochromics-Based Devices

Valyukh, Iryna January 2009 (has links)
This dissertation is focused on theoretical and experimental studies of optical properties of materials and multilayer structures composing liquid crystal displays (LCDs) and electrochromic (EC) devices. By applying spectroscopic ellipsometry, we have determined the optical constants of thin films of electrochromic tungsten oxide (WOx) and nickel oxide (NiOy), the films’ thickness and roughness. These films, which were obtained at spattering conditions possess high transmittance that is important for achieving good visibility and high contrast in an EC device. Another application of the general spectroscopic ellipsometry relates to the study of a photo-alignment layer of a mixture of azo-dyes SD-1 and SDA-2. We have found the optical constants of this mixture before and after illuminating it by polarized UV light. The results obtained confirm the diffusion model to explain the formation of the photo-induced order in azo-dye films. We have developed new techniques for fast characterization of twisted nematic LC cells in transmissive and reflective modes. Our techniques are based on the characteristics functions that we have introduced for determination of parameters of non-uniform birefringent media. These characteristic functions are found by simple procedures and can be utilised for simultaneous determination of retardation, its wavelength dispersion, and twist angle, as well as for solving associated optimization problems. Cholesteric LCD that possesses some unique properties, such as bistability and good selective scattering, however, has a disadvantage – relatively high driving voltage (tens of volts). The way we propose to reduce the driving voltage consists of applying a stack of thin (~1µm) LC layers. We have studied the ability of a layer of a surface stabilized ferroelectric liquid crystal coupled with several retardation plates for birefringent color generation. We have demonstrated that in order to accomplish good color characteristics and high brightness of the display, one or two retardation plates are sufficient.
19

3D Magnetic Photonic Crystals : Synthesis and Characterization

Fang, Mei January 2010 (has links)
No description available.
20

Optical Characterization and Optimization of Display Components : Some Applications to Liquid-Crystal-Based and Electrochromics-Based Devices

Valyukh, Iryna January 2009 (has links)
This dissertation is focused on theoretical and experimental studies of optical properties of materials and multilayer structures composing liquid crystal displays (LCDs) and electrochromic (EC) devices. By applying spectroscopic ellipsometry, we have determined the optical constants of thin films of electrochromic tungsten oxide (WOx) and nickel oxide (NiOy), the films’ thickness and roughness. These films, which were obtained at spattering conditions possess high transmittance that is important for achieving good visibility and high contrast in an EC device. Another application of the general spectroscopic ellipsometry relates to the study of a photo-alignment layer of a mixture of azo-dyes SD-1 and SDA-2. We have found the optical constants of this mixture before and after illuminating it by polarized UV light. The results obtained confirm the diffusion model to explain the formation of the photo-induced order in azo-dye films. We have developed new techniques for fast characterization of twisted nematic LC cells in transmissive and reflective modes. Our techniques are based on the characteristics functions that we have introduced for determination of parameters of non-uniform birefringent media. These characteristic functions are found by simple procedures and can be utilised for simultaneous determination of retardation, its wavelength dispersion, and twist angle, as well as for solving associated optimization problems. Cholesteric LCD that possesses some unique properties, such as bistability and good selective scattering, however, has a disadvantage – relatively high driving voltage (tens of volts). The way we propose to reduce the driving voltage consists of applying a stack of thin (~1µm) LC layers. We have studied the ability of a layer of a surface stabilized ferroelectric liquid crystal coupled with several retardation plates for birefringent color generation. We have demonstrated that in order to accomplish good color characteristics and high brightness of the display, one or two retardation plates are sufficient.

Page generated in 0.0631 seconds