• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identifikation und Mehrgrößenregelung von isolierten Organen in Perfusionssystemen mit nichtlinear dynamischen und wissensbasierten Methoden

Gransow, Marian 29 May 2017 (has links) (PDF)
Die Transplantation eines Organes ist in der Medizin oftmals die letzte Möglichkeit zur Behandlung einer terminalen Organinsuffizienz. Das grundlegende Problem der internationalen Transplantationsmedizin ist die stetig wachsende Diskrepanz zwischen Bedarf und Angebot von Transplantaten. Die Situation wird dramatisiert durch einen Trend der Marginalisierung von Spenderorganen. Marginale Spenderorgane werden häufig aufgrund mangelnder Möglichkeiten zur Funktionsbewertung verworfen. Die Technik der ex-vivo Organperfusion kann maschinell physiologienahe Bedingungen bereitstellen, um ein isoliertes Transplantat zu rekonditionieren und sogar eine Bewertung seines Zustands zu ermöglichen. Perfusionsprozesse sind organsystemindividuell durch eine hohe Komplexität ihrer biologisch-technisch verkoppelten Vorgänge gekennzeichnet. Für nutzer- und sicherheitsorientierte, klinisch taugliche Perfusionssysteme ist eine Prozessautomatisierung unumgänglich. Hier sind in klassischer anwendungsindividueller Entwicklung hohe Kosten die Folge. Auf Basis von Recherchen zum aktuellen Stand von Medizin und Technik konnten Eigenschaften von Perfusionsprozessen für die Organsysteme Herz, Lunge, Leber und Niere bestimmt werden. Aus ähnlichen Anwendungen der extrakoporalen Lebensunterstützung sind Erkenntnisse zur Systemautomatisierung zusammengetragen worden. In Fortführung der Arbeit sind die Organperfusionsprozesse abstrahiert und verallgemeinert worden. Beteiligte Prozessgrößen, sowie deren funktioneller Verkopplungen wurden identifiziert und evaluiert, um schließlich eine generalisierte, organunabhängige Strategie zur dezentralen Mehrgrößenregelung abzuleiten. Die abgeleitete Regelungsstrategie wurde folgend speziell für die ex-vivo Nierenperfusion umgesetzt. Dazu wurde zunächst auf Basis des generalisierten Organperfusionsprozesses ein Gerätesystem zur Nierenperfusion abgeleitet, entwickelt und aufgebaut. Für das entstandene Perfusionssystem wurden Modellbildungen und Parameteridentifikationen des Temperatursystems, des hämodynamischen Systems und des Blutgassystems durchgeführt. Die entstandenen Zustandsraummodelle wurden jeweils in Simulink implementiert und mittels realer Perfusionsexperimente an Schweinenieren im Tiermodell validiert. Simulativ und analytisch wurden für die drei Subsysteme Regelungsstrategien zur robusten Einzelgrößenregelung entwickelt und im realen Perfusionssystem implementiert. Im Zuge von weiteren Perfusionsexperimenten im Tiermodell konnten die Regelungen ebenfalls validiert und deren Robustheit im Mehrgrößenfall evaluiert werden. Die Erkenntnisse der speziellen Umsetzung des generalisierten Mehrgrößenregelungsansatzes zur Organperfusion wurden auf die Organsysteme Herz, Lunge und Leber projiziert. Die Hypothese dieser Arbeit, dass eine organübergreifende generalisierte Regelungsstrategie zur ex-vivo Perfusion bei Nutzung mit verschiedenen speziellen Organsystemen tauglich ist, konnte bestätigt werden. Auf dieser Basis ist eine vereinfachte und kostenreduzierte Entwicklung von Perfusionssystemen für verschiedene Organsysteme möglich. / In many cases the transplantation of an organ is the last way to treat a terminal organ insuffiency. The basic problem of international transplant medicine is a continiously increasing gap between the demand and the proposal of sufficient organ grafts. The situation is compounded by the actual trend of marginalization of organ grafts. Marginal donor grafts often are discarded due to absent options to test their vitality and viability. The technique of ex-vivo organ perfusion provides near physiologic conditions in order to recondition and even to evaluate the state of an isolated organ graft. Perfusion processes are organ individual characterized by highly complex coupled biological-technical processes. For achieving an user- and safety-focussed, clinical suitable perfusion system, an automation of the system is inavoidable. Within classical development of technologies, high costs were following. On the base of research according to the actual status quo of medicine and technology, characteristics of the perfusion processes for the heart, the lungs, the liver and the kidneys could be determined. Knowledge about similar processes of extracorporeal life support were gathered. Subsequently the organ perfusion processes were abstracted and generalized. Participating process values, as well as their couplings, were identified and evaluated in order to extract a generalized, organ independent strategy for decentral multivariable control. The extracted control strategy was then transfered specificly for ex-vivo kidney perfusion. Therefore a device for ex-vivo kidney perfusion was developed and built from the generalized organ perfusion process. According to the implemented device, the temperature system, the hemodynamic system and the blood gas system were modelled mathematically and parameter estimations were performed. The resulted state space models were implemented to Simulink and validated by comparing simulations to the results of experiments on real procine kidneys. Within the simulations and based on analytical methods, robust single variable control strategies for the control of the three subsystems temperature, hemodynamic and blood gases were developed and implemented into the real kidney perfusion device. During further perfusion experiments within the large animal model, the control strategies could be validated an their robustness could be evaluated in the multivariable case. The findings of the special implementation of the generalized multivariableapproach for organ perfusion were projected on the organ systems heart, lungs and liver. The hypothesis of this work, in detail, that a generalized, organ independent control strategy for organ perfusion processes is suitable for the use with several special organ systems, could be confirmed. On this basis, simplified and cost reduced developments of perfusion systems for different organ systems are possible.
2

Hämodynamische und funktionelle Charakterisierung eines Modells zur isolierten Nierenperfusion anhand von Noradrenalin und Nitroprussid-Natrium

Aurich, Henning 27 July 2004 (has links)
Einleitung - Die ethische Rechtfertigung von Tierversuchen ist in unserer Gesellschaft höchst umstritten. Es ist in zunehmendem Maße Gegenstand von wissenschaftlichen Bemühungen, Alternativmethoden zu Tierversuchen zu etablieren. Fragestellung - In dieser Arbeitsgruppe wurde ein Modell zur isolierten Vollblutperfusion kältekonservierter Schlachthoforgane entwickelt. Es wurde anhand von Experimenten mit vasoaktiven Pharmaka der hämodynamische Funktionszustand der isoliert reperfundierten Schweineniere evaluiert. Methoden - 21 Nieren wurden nach einer warmen Ischämiephase von 16,5 min ± 4,3 min und einer Kältekonservierung von 6,6 h ± 1,9 h für insgesamt 150 Minuten normotherm reperfundiert, wovon eine Zeitspanne von 45 Minuten nach einer einstündigen Äquilibrierungsphase bei allen Nieren als interne Kontrolle diente. Daraufhin wurde ohne Pharmakongabe bei 6 Nieren (Gruppe 1, Kontrolle), unter Dauerinfusion von Nitroprussid-Natrium (NN) bei 8 Nieren (Gruppe 2) und von Noradrenalin (NA) bei 7 Nieren (Gruppe 3) für weitere 45 Minuten mit der Perfusion fortgefahren. In 15-minütigen Abständen wurden Blut- und Urinproben entnommen, und so wurden die renalen Funktionsparameter bestimmt sowie der Urin per Gelelektrophorese qualitativ auf Proteinurie untersucht. Anschließend an die Perfusion wurden die Nieren einer pathologisch-histologischen Begutachtung unterzogen, die mittels eines selbstentwickelten Scores quantifiziert wurde. Ergebnisse - Die beiden vasoaktiven Pharmaka entfalteten in der Interventionsphase die ihnen normalerweise zugeschriebenen Primärwirkungen: NA konstringierte die Hauptwiderstandsgefäße der Niere. Der renale Widerstand stieg von 0,61 auf 0,80 mmHg*min/(ml*100gNG). NN dilatierte die Hauptwiderstandsgefäße. Der Perfusionswiderstand sank von 0,74 auf 0,65 mmHg*min/(ml*100gNG). Umgekehrt verhielt sich der Perfusionsplasmafluß. Er sank unter NA von 104,74 auf 87,45 ml/(min*100gNG), während er unter NN von 107,20 auf 121,98 ml/(min*100gNG) stieg. Das Harnzeitvolumen stieg unter NA von 3,01 auf 3,33 ml/(min*100gNG) und sank unter NN von 1,62 auf 1,10 ml/(min*100gNG). Die Kreatininclearance sank sowohl unter NA (von 11,02 auf 9,48 ml/(min*100gNG)), als auch unter NN (von 10,89 auf 6,31 ml/(min*100gNG)). Während die Filtrationsfraktion unter NA konstant blieb, sank sie unter NN von 11,66 auf 6,30 %. Der Natriumtransport sank unter beiden Pharmaka, und zwar unter NA von 1,34 auf 1,14 mmol/(min*100gNG) und unter NN von 1,43 auf 0,84 mmol/(min*100gNG).Die Elektrophorese zeigte qualitativ eine selektive, im späteren Perfusionsverlauf unselektiver werdende Proteinurie bei allen untersuchten Nieren. In der Histologie zeigte sich in der Referenzgruppe tendentiell ein geringer ausgeprägter Ischämie-Reperfusionsschaden als nach Perfusion mit den verwendeten Pharmaka. Unter NN ließ sich hauptsächlich eine vermehrte Vakuolenbildung ausmachen, unter NA eine Dilatation der proximalen Tubuli. Diskussion - An den gemessenen Funktionsparametern konnte eine bevorzugte Wirkung beider Substanzen an den postglomerulären Arteriolen abgelesen werden, wie dies auch von der Literatur fast einhellig bestätigt wird. Die Ergebnisse der Elektrophorese lassen auf einen glomerulären Ischämieschaden schließen. Auch durch die histologische Begutachtung konnte diese Aussage des Ischämie-Reperfusionsschadens mit Ausdehnung auf eine tubuläre Komponente des Schadens bekräftigt werden. Sie steht in direktem Zusammenhang mit den Ergebnissen der Evaluation der Funktionsparameter. Die Ischämie bewirkte in erster Linie eine Erhöhung des renalen Gefäßwiderstandes. Die Verwendung des Kalziumantagonisten Verapamil sollte diesen Effekt einschränken und führte zu einer aufgehobenen Autoregulation. Die Experimente liefern als ein Modell des ischämisch induzierten Nierenversagens reproduzierbare und signifikante Ergebnisse. / Introduction - Ethical justification of vivisection is subject to controverse discussion. It is an issue of scientific effort to establish alternative methods. In this study a model of normothermic reperfusion was established including organs from slaughterhouse animals undergoing cold ischemia before reperfusion. Vasoactive agents were used to determine the state of function of the isolated reperfused pig kidney. Methods - 21 kidneys were reperfused for 150 minutes after a cold ischemia of 6.6 h ± 1.9 h and a warm ischemia of 16.5 min ± 4.3 min. Normothermic conditions were established. After a time span of an hour that served as an equilibration time, 45 minutes of untreated perfusion followed (internal control). After that, 6 kidneys remained untreated for another 45 minutes (group 1), 8 kidneys were continuously treated with sodium nitroprusside (SN) and 7 kidneys with norepinephrine (NE). In intervals of 15 minutes, blood and urine samples were taken. Thus parameters of renal function were determined and the urine was examined with gel electrophoresis. After the perfusion, all kidneys underwent a histopathological examination which was quantified using a self-established score. Results - Both pharmacological substances revealed their primary effects on renal vasculature. NE constricted the main renal resistance vessels. Renal resistance raised from 0.61 to 0.80 mmHg*min/(ml*100g renal weight). SN dilated the main resistance vessels. Perfusion resistance was reduced from 0.74 to 0.65 mmHg*min/(ml*100g renal weight). Perfusion plasma flow was reduced from 104.74 to 87.45 ml/(min*100g renal weight) under NE. It was raised from 107.20 to 121.98 ml/(min*100grenal weight) under SN. Under NE, urine time volume was raised from 3.01 to 3.33 ml/(min*100g renal weight) and it was reduced from 1.62 to 1.10 ml/(min*100g renal weight) under SN. Creatinine clearance was reduced rom 11.02 to 9.48 ml/(min*100g renal weight) under NE as well as under SN (from 10.89 to 6.31 ml/(min*100g renal weight)). Filtration fraction remained constant during infusion of NE, but it was reduced from 11.66 to 6.30 % under SN. Sodium transport was reduced under both substances. NE reduced it from 1.34 to 1.14 mmol/(min*100g renal weight) and from 1.43 to 0.84 mmol/(min*100g renal weight) under SN. Electrophoresis revealed qualitatively selective proteinuria in all examined kidneys, becoming more unselective in the course of the experiment. Histopathological findings revealed a smaller reperfusion injury in the control group than in both other groups (P>0.05). SN led to a vacuolisation in proximal tubular epithelium, NE was mainly responsible for a dilation of the proximal tubuli. Discussion - All measured function parameters revealed that the main effect of both substances was located in the postglomerular sphincter, which is also postulated by most of the literature. The results of urine electrophoresis lead to the assumption that there is a glomerular ischemic injury. Histological findings show also a tubular aspect of the reperfusion injury. It can be seen in direct context with the parameters of renal function. Ischemia was mainly responsible for a raise in renal vascular resistance. The calcium antagonist verapamil hydrochloride was used to diminish this effect and prevented autoregulation. Being defined as a model of ischemically induced renal failure, the experiments reveal reproducible and significant results.
3

Das Herz-Kreislaufsystem während des Kapnoperitoneums

Junghans, Tido 04 December 2003 (has links)
Aus vielen experimentellen und klinischen Studien geht hervor, dass ein Kapnoperitoneum zu charakteristischen Kreislaufveränderungen führt. Danach kommt es durch die Insufflation eines Gases in die Peritonealhöhle zu einer Erhöhung des intraperitonealen Druckes und zu einer Zunahme sowohl des peripheren venösen Druckes als auch des intrathorakalen Druckes. Insgesamt nimmt der Druckgradient zwischen diesen beiden Drücken ab. Als Folge wird der venöse Rückstrom zum Herzen reduziert, wodurch wiederum das Blutangebot für das Herz, welches die kardiale Vorlast wesentlich bestimmt, vermindert wird. Konsekutiv führt das letztlich zu einer Abnahme des Herzschlag- und des Herzminutenvolumens. Das verminderte Herzschlagvolumen wird von den arteriellen Barorezeptoren registriert, wodurch eine Stimulation des Sympathikus ausgelöst wird. Als Kompensationsmechanismus steigen die Herzfrequenz, in vielen Studien der mittlere arterielle Druck und der systemische Gefäßwiderstand. Als hormonelle Regulation wird Vasopressin ausgeschüttet. Der Anstieg dieser Drücke bedeutet eine Zunahme der kardialen Nachlast, was die kardiale Belastung weiter erhöht. Am gesunden Herzen wird die myokardiale Kontraktilität durch das Kapnoperitoneum nicht beeinflusst. An einem komplexen Tiermodell an 43 Läuferschweinen sollte überprüft werden, ob eine gezielte Erhöhung der kardialen Vorlast durch kolloidale Volumenersatzmittel, eine partielle Blockade der sympathikotonen Reaktionen durch den selektiven ß-Blocker Esmolol oder eine gezielte Senkung der kardialen Nachlast durch den Vasodilatator Nitroprussidnatrium geeignet sind, die negativen Auswirkungen des Kapnoperitoneums zu vermindern und die Herz-Kreislauffunktion bei laparoskopischen Operationen zu verbessern. Weil bekannt ist, dass die Körperposition eine wichtige Rolle bei der Ausprägung der physiologischen Veränderungen spielt, sollten die Tiere in Gruppen entweder in Horizontal-, Kopfhoch- oder Kopftieflage untersucht werden. Das ist von besonderer Bedeutung, weil viele laparoskopische Operationen zur Optimierung der Übersicht im Operationsgebiet eine Modifikation der Körperposition erfordern. Oberbaucheingriffe wie die Cholecystektomie werden vornehmlich in Kopfhochlage durchgeführt, während gynäkologische Laparoskopien in Kopftieflage stattfinden. Zur Vermeidung einer Hypovolämie erhielten die Tiere vor Beginn der Messungen 1l kristalloide Infusion. Die Untersuchungen ergaben, dass unter diesen Bedingungen ein Kapnoperitoneum von 14 mm Hg in Horizontallage ohne wesentliche Veränderungen der Herz- Kreislaufparameter toleriert wurde. Lediglich in Kopftief- und in Kopfhochlage war mit dem Intrathorakalen Blutvolumen ein wesentlicher Parameter der kardialen Vorlast vermindert und die Herzauswurfleistung mit dem Herzschlag- und Herzminutenvolumen reduziert, während die kardiale Nachlast mit dem peripheren systemischen Gefäßwiederstand erhöht war und die myokardiale Kontraktilität unverändert blieb. Damit kommt dem intrathorakalen Blutvolumen eine entscheidende Bedeutung zu. Eine Erhöhung des intrathorakalen Blutvolumens und damit der kardialen Vorlast verbesserte die Herzkreislauffunktion während des Kapnoperitoneums in allen Körperpositionen deutlich. Das äußerte sich in einer Steigerung des mittleren arteriellen Druckes, der im Normbereich blieb, einer Abnahme des systemischen Gefäßwiderstandes und einem Anstieg der Herzauswurfleistung. Die Esmolomedikation beeinträchtigte die Herzkreislauffunktion während des Kapnoperitoneums, indem sie die myokardiale Kontraktilität verschlechterte und die Herzfrequenz senkte mit der Folge, dass das Herzminutenvolumen abnahm. Die Senkung des mittleren arteriellen Druckes durch Nitroprussidnatrium verschlechterte ebenfalls in einigen Körperpositionen die myokardiale Kontraktilität und das Herzschlag- sowie das Herzminutenvolumen. Die beiden letztgenannten Konzepte können somit nicht generell zur Therapie hämodynamischer Effekte eines Kapnoperitoneums empfohlen werden. Entscheidende Bedeutung kommt einer Optimierung des intravasalen Volumens zu. Die Pfortader- und Nierendurchblutung wurden in diesem Modell durch das Kapnoperitoneum in keiner Körperposition relevant beeinträchtigt. Auch in der Literatur findet sich kein Hinweis auf eine durch ein Kapnoperitoneum induzierte dauerhafte Funktionsstörung von Leber oder Niere. / A capnoperitoneum increases peripheral venous resistance as well as intrathoracic pressure thus compromising venous blood return to the heart which is determinded by the pressure gradient between peripheral and central venous pressure. With a decreased cardiac preload cardiac stroke volume and cardiac output are reduced. The reduction in stroke volume induces changes in the carotidal sinus activity followed by an increased sympathetic nerve activity. These effects were often expressed by an increased heart rate, mean arterial pressure, or peripheral systemic resistance. As a hormonal reaction to theses changes vasopressin release increases further elevating cardiac afterload. Changes of cardiac contractility were not described during capnoperitoneum. In a procine trial using 43 piglets the questions should be answered if an increase of cardiac preload by infusion of colloidal fluids, a partial blockade of sympathetic receptors by esmolol, or a reduction of the cardiac afterload by infusion of the vasodilatator nitroprussidnatrium can minimize hemodynamic changes during capnoperitoneum. Because the body position is known to influence hemodynamic parameters and has to be varied during laparoscopic procedures pigs were divided into three groups representing head-up, head-down, and supine position. To avoid hypovolemia before the measurements the animals received 1L cristal solutions intravenously before the beginning of the experiment. In supine position the animals tolerated a capnoperitoneum of 14 mm Hg without changes of hemodynamic parameters. In head-up as well as in head-down position the intrathoracic blood volume decraesed followed by a reduction of stroke volume and cardiac output and an increase of peripheral systemic resistance. Cardiac contractility remained unchanged during all positions. The increase of intrathoracic blood volume by colloidal infusion improved hemodynamic parameters during all body positions. Mean arterial pressure increasesd to normal ranges while the peripheral systemic resistance decreased and the cardiac output increased. The medication of esmolol had negative effects on hemodynamic function during capnoperitoneum because heart rate and myocardial contractility as well as cardiac output decreased. Medication of Nitroprussidnatrium during capnoperitoneum was also shown to partly compromise myocardial contractility and stroke volume as well as cardiac output so that both therapeutical concepts, medication of esmolol and nitroprussidnatrium failed to improve hemodynamic function during capnoperitoneum. Optimizing intravascular volume and cardiac preload is of major importance to avoid hemodynamic side effects of capnoperitoneum. The perfusion of the portal vein as well as the renal artery were not influenced in none position during a capnoperitoneum of 14 mm Hg in this trial. However, the review of the literature did not indicate any prolonged influences on hepatic or renal function induced by capnoperitoneum of pressures around 14 mm Hg.
4

Identifikation und Mehrgrößenregelung von isolierten Organen in Perfusionssystemen mit nichtlinear dynamischen und wissensbasierten Methoden

Gransow, Marian 31 March 2017 (has links)
Die Transplantation eines Organes ist in der Medizin oftmals die letzte Möglichkeit zur Behandlung einer terminalen Organinsuffizienz. Das grundlegende Problem der internationalen Transplantationsmedizin ist die stetig wachsende Diskrepanz zwischen Bedarf und Angebot von Transplantaten. Die Situation wird dramatisiert durch einen Trend der Marginalisierung von Spenderorganen. Marginale Spenderorgane werden häufig aufgrund mangelnder Möglichkeiten zur Funktionsbewertung verworfen. Die Technik der ex-vivo Organperfusion kann maschinell physiologienahe Bedingungen bereitstellen, um ein isoliertes Transplantat zu rekonditionieren und sogar eine Bewertung seines Zustands zu ermöglichen. Perfusionsprozesse sind organsystemindividuell durch eine hohe Komplexität ihrer biologisch-technisch verkoppelten Vorgänge gekennzeichnet. Für nutzer- und sicherheitsorientierte, klinisch taugliche Perfusionssysteme ist eine Prozessautomatisierung unumgänglich. Hier sind in klassischer anwendungsindividueller Entwicklung hohe Kosten die Folge. Auf Basis von Recherchen zum aktuellen Stand von Medizin und Technik konnten Eigenschaften von Perfusionsprozessen für die Organsysteme Herz, Lunge, Leber und Niere bestimmt werden. Aus ähnlichen Anwendungen der extrakoporalen Lebensunterstützung sind Erkenntnisse zur Systemautomatisierung zusammengetragen worden. In Fortführung der Arbeit sind die Organperfusionsprozesse abstrahiert und verallgemeinert worden. Beteiligte Prozessgrößen, sowie deren funktioneller Verkopplungen wurden identifiziert und evaluiert, um schließlich eine generalisierte, organunabhängige Strategie zur dezentralen Mehrgrößenregelung abzuleiten. Die abgeleitete Regelungsstrategie wurde folgend speziell für die ex-vivo Nierenperfusion umgesetzt. Dazu wurde zunächst auf Basis des generalisierten Organperfusionsprozesses ein Gerätesystem zur Nierenperfusion abgeleitet, entwickelt und aufgebaut. Für das entstandene Perfusionssystem wurden Modellbildungen und Parameteridentifikationen des Temperatursystems, des hämodynamischen Systems und des Blutgassystems durchgeführt. Die entstandenen Zustandsraummodelle wurden jeweils in Simulink implementiert und mittels realer Perfusionsexperimente an Schweinenieren im Tiermodell validiert. Simulativ und analytisch wurden für die drei Subsysteme Regelungsstrategien zur robusten Einzelgrößenregelung entwickelt und im realen Perfusionssystem implementiert. Im Zuge von weiteren Perfusionsexperimenten im Tiermodell konnten die Regelungen ebenfalls validiert und deren Robustheit im Mehrgrößenfall evaluiert werden. Die Erkenntnisse der speziellen Umsetzung des generalisierten Mehrgrößenregelungsansatzes zur Organperfusion wurden auf die Organsysteme Herz, Lunge und Leber projiziert. Die Hypothese dieser Arbeit, dass eine organübergreifende generalisierte Regelungsstrategie zur ex-vivo Perfusion bei Nutzung mit verschiedenen speziellen Organsystemen tauglich ist, konnte bestätigt werden. Auf dieser Basis ist eine vereinfachte und kostenreduzierte Entwicklung von Perfusionssystemen für verschiedene Organsysteme möglich. / In many cases the transplantation of an organ is the last way to treat a terminal organ insuffiency. The basic problem of international transplant medicine is a continiously increasing gap between the demand and the proposal of sufficient organ grafts. The situation is compounded by the actual trend of marginalization of organ grafts. Marginal donor grafts often are discarded due to absent options to test their vitality and viability. The technique of ex-vivo organ perfusion provides near physiologic conditions in order to recondition and even to evaluate the state of an isolated organ graft. Perfusion processes are organ individual characterized by highly complex coupled biological-technical processes. For achieving an user- and safety-focussed, clinical suitable perfusion system, an automation of the system is inavoidable. Within classical development of technologies, high costs were following. On the base of research according to the actual status quo of medicine and technology, characteristics of the perfusion processes for the heart, the lungs, the liver and the kidneys could be determined. Knowledge about similar processes of extracorporeal life support were gathered. Subsequently the organ perfusion processes were abstracted and generalized. Participating process values, as well as their couplings, were identified and evaluated in order to extract a generalized, organ independent strategy for decentral multivariable control. The extracted control strategy was then transfered specificly for ex-vivo kidney perfusion. Therefore a device for ex-vivo kidney perfusion was developed and built from the generalized organ perfusion process. According to the implemented device, the temperature system, the hemodynamic system and the blood gas system were modelled mathematically and parameter estimations were performed. The resulted state space models were implemented to Simulink and validated by comparing simulations to the results of experiments on real procine kidneys. Within the simulations and based on analytical methods, robust single variable control strategies for the control of the three subsystems temperature, hemodynamic and blood gases were developed and implemented into the real kidney perfusion device. During further perfusion experiments within the large animal model, the control strategies could be validated an their robustness could be evaluated in the multivariable case. The findings of the special implementation of the generalized multivariableapproach for organ perfusion were projected on the organ systems heart, lungs and liver. The hypothesis of this work, in detail, that a generalized, organ independent control strategy for organ perfusion processes is suitable for the use with several special organ systems, could be confirmed. On this basis, simplified and cost reduced developments of perfusion systems for different organ systems are possible.

Page generated in 0.0639 seconds