Spelling suggestions: "subject:"organisatorisk syntes""
11 |
Synthesis of β-turn and pyridine based peptidomimeticsBlomberg, David January 2007 (has links)
Despite the unfavorable pharmacokinetic properties associated with peptides, they are still of great interest in drug development due to a multitude of interesting biological functions. The development of peptidomimetics strives to maintain or improve the biological activity of a peptide concurrently with removing the unwanted properties. This thesis describes two synthetic approaches to peptidomimetics with particular emphasis on secondary structure mimetics. First the design, synthesis and evaluation of two beta-turn mimetics incorporated in the endorphin Leu-enkephalin is presented. The beta-turn mimetics were stabilized by replacement of the intramolecular hydrogen bond with an ethylene bridge, and the amide bond between Tyr and Gly was replaced with an ether linkage. Linear analogues of the two mimetics were also synthesized. The peptidomimetics and their linear analogues were evaluated in a competitive binding assay at two opiate receptors, my and delta. One of the cyclized beta-turn mimetics was found to be a delta receptor antagonist with an IC50 value of 160 nM. Second a synthetic strategy to a beta-strand mimetic using 2-fluoro-4-iodopyridine as scaffold is described. The synthesis involved a Grignard exchange reaction on the pyridine scaffold using an amino acid derivative as electrophile followed by an SNAr reaction using an amine as nucleophile. The synthesis of a tripeptidomimetic of Leu-Gly-Gly and attempts to introduce chiral building blocks at the C-terminal, as well as studies towards elongated mimetics are presented. Two additional studies deal with the synthesis of two classes of potential thrombin inhibitors based on the pyridine scaffold. The first class contain pyridine as central fragment (P2 residue) substituted with a para-amidinobenzylamine group as P1 residue and various benzoyl groups as P3 residues. Three potential thrombin inhibitors were synthesized and found to be microM inhibitors in an enzymatic assay. In the second class, the pyridine ring serves as P3 residue. This class also lacks a strongly basic group in the P1 position. A small library of eight compounds were synthesized and evaluated in the enzymatic assay. Unfortunately, these compounds lacked inhibitory activity.
|
12 |
Reaction Between Grignard reagents and Heterocyclic N-oxides : Synthesis of Substituted Pyridines, Piperidines and PiperazinesAndersson, Hans January 2009 (has links)
This thesis describes the development of new synthetic methodologies for preparation of bioactive interesting compounds, e.g. substituted pyridines, piperidines or piparazines. Thesecompounds are synthesized from commercially available, cheap and easily prepared reagents, videlicet the reaction between Grignard reagents and heterocyclic N-oxides. The first part of this thesis deals with an improvement for synthesis of dienal-oximes and substituted pyridines. This was accomplished by a rapid addition of Grignard reagents to pyridine N-oxides at rt. yielding a diverse set of substituted dienal-oximes. During these studies, it was observed that the obtained dienal-oxmies are prone to ring-close upon heating. By taking advantage of this, a practical synthesis of substituted pyridines was developed. In the second part, an ortho-metalation of pyridine N-oxides using Grignard reagents is discussed. The method can be used for incorporation of a range of different electrophiles, including aldehydes, ketones and halogens. Furthermore, the importance for incorporation of halogens are exemplified through a Suzuki–Miyaura coupling reaction of 2-iodo pyridine N-oxides and different boronic acids. Later it was discovered that if the reaction temperature is kept below -20 °C, the undesired ringopening can be avoided. Thus, the synthesis of 2,3-dihydropyridine N-oxide, by reacting Grignard reagents with pyridine N-oxides at -40 °C followed by sequential addition of aldehyde or ketone, was accomplished. The reaction provides complete regio- and stereoselectivity yielding trans-2,3-dihydropyridine N-oxides in good yields. These intermediate products could then be used for synthesis of either substituted piperidines, by reduction, or reacted in a Diels–Alder cycloaddtion to give the aza-bicyclo compound. In the last part of this thesis, the discovered reactivity for pyridine N-oxides, is applied on pyrazine N-oxides in effort to synthesize substituted piperazines. These substances are obtained by the reaction of Grignard reagents and pyrazine N-oxides at -78 °C followed by reduction and protection, using a one-pot procedure. The product, a protected piperazine, that easily can be orthogonally deprotected, allowing synthetic modifications at either nitrogens in a fast and step efficient manner. Finally, an enantioselective procedure using a combination of PhMgCl and (-)-sparteine is discussed, giving opportunity for a stereoselective synthesis of substituted piperazines.
|
13 |
Synthesis and functionalization of ring-fused 2-pyridones : Targeting pili formation in E. coliPemberton, Nils January 2007 (has links)
Bicyclic dihydrothiazolo fused 2-pyridones have been studied as a new class of antibacterial agents, termed pilicides, that target the formation of adhesive bacterial surface organelles (pili) in pathogenic bacteria. Synthetic methods to further functionalize the bicyclic 2-pyridone scaffold have been developed in order to increase water-solubility and thereby facilitate biological evalua-tions. This was accomplished by introducing aminomethylenes at the open position C-6. Tertiary amines were introduced via a microwave–assisted Mannich reaction and a synthetic route based on a formyl intermediate gave access to primary, secondary and tertiary amines, but also to other interesting functionalities. Biological evaluation confirmed that several of the function-alized compounds inhibited pili formation in uropathogenic E. coli., as dem-onstrated by assays of hemagglutination, biofilm formation and adherence to bladder cells. Co-crystallizing one of the pilicides with the target protein gave information about the binding site and based on this a mechanism of action was proposed, which was supported experimentally by surface plas-mon resonance and single point mutations in the protein. Furthermore, the previously developed acylketene imine reaction used to prepare bicyclic thiazolo fused 2-pyridone pilicides has been developed to allow preparation of other ring-fused 2-pyridone systems. Benzo[a]quinolizine-4-ones and indolo[2,3-a]quinolizine-4-ones could be prepared in a fast and simple manner starting from dihydroisoquinolines and a β-carboline. Finally, this method could also be applied for the preparation of heteroatom analogs of the previously studied sulfur containing pilicides. Biological evaluations established that the sulfur atom can be replaced by oxygen and still maintain the ability to prevent pili assembly.
|
14 |
Synthesis of bioactive compounds: Synthetic study of D-Lac-terminated peptidoglycan fragment structures / Syntes av bioaktiva föreningar: Syntetisk studie av D-Lac-avslutade peptidoglykanfragmentstrukturerSaito, Yu January 2021 (has links)
Peptidoglycan (PGN) är en bakteriecellväggskomponent och känd för att känna igen olika receptorer eller enzymer för att leda aktiveringsimmunsystemet. Den allmänna strukturen för PGN består av sockerkedjor inklusive N-acetylglutamin (GlcNAc), N-acetylmuraminsyra (MurNAc) och tvärbundna peptidkedjor. PGN-fragment med D-Lac-ändpeptider har hittats från vankomycinresistenta enterokocker men ett kemiskt syntetiserat PGN-fragment med en D-Lac-ändpeptid har inte undersökts i detalj. Således fokuserade vi på syntesen av PGN-fragmentstrukturer som inkluderar en D-Ala-D-Lac-rest vid den terminala delen av peptidkedjan. För att syntetisera dessa fragmentstrukturer planerade vi att kombinera fastfassyntes (för Lac-peptiddelen) och lösningsfassyntes (för glykanberedning och kondensation). Detta tillvägagångssätt är fördelaktigt för framställning av peptidoglykanfragment med en komplex grenad peptiddel. Först beredde vi sockerdelen MurNAc-derivatet i lösningsfassyntes från ett glukosderivat. Medan den Lac-innehållande peptiden framställdes med fastfas-peptidsyntes med användning av 2-klortritylkloridharts. Med denna förening gav kondensationen av dessa två föreningar det önskade D-Lac-avslutade peptidoglykanfragmentet. / Peptidoglycan (PGN) is a bacterial cell wall component and known to be recognized by various receptors or enzymes to lead the activation immune system. The general structure of PGN consists of sugar chains including N-acetylglutamine (GlcNAc), N-acetylmuramic acid (MurNAc) and cross-linked peptide chains. PGN fragments having D-Lac terminus peptides have been found from vancomycin-resistant enterococcus, but a chemically synthesized PGN fragment having a D-Lac terminus peptide has not been examined in detail. Thus, we focused on the synthesis of PGN fragment structures that include a D-Ala-D-Lac residue at the terminal part of the peptide chain. In order to synthesize these fragment structures, we planned to combine solid-phase synthesis (for the peptide- Lac part) and solution-phase synthesis (for glycan preparation and the condensation). This approach is advantageous for the preparation of peptidoglycan fragments having complex branched peptide moiety. First, we prepared the sugar moiety MurNAc derivative in solution-phase synthesis from a glucose derivative. While, the Lac-containing peptide was prepared with solid-phase peptide synthesis using 2-chlorotrityl chloride resin. Having this compound, the condensation of these two compounds gave the desired D-Lac-terminated peptidoglycan fragment.
|
15 |
Synthesis of aromatic thiol ligands for the formation of thermoelectric materials / Syntes av aromatiska tiol-ligander till termoelektriska materialBouchut, Clément January 2024 (has links)
I detta arbete så har en uppsättning aromatiska ditiol-ligander framställts (3,5-dimerkaptobensoesyra I, methyl-3,5-dimerkaptobensoat II, 3,5-dimerkaptotoluen III, 4,6-dimerkaptoisoftalaldehyde IV). En trestegssyntes innehållande Newman-Kwart omlagring som nyckelsteg användes för framställning av föreningarna I-III medan förening IV togs fram via en annan syntesväg. De fyra föreningarna syntetiserades I relativt bra utbyte (5-80% över 3, 4 eller 6 steg) och karaktäriserades med hjälp av 1H-NMR, 13C-NMR, och högupplösande masspektrometri. I en framtida fortsättning av projektet så kommer föreningarna I-IV användas som organiska ligander i koordinationspolymerer, vilka kommer karaktäriseras i termer av elektriska och termiska egenskaper. / In this work, a family of aromatic dithiol ligands were synthesized in the laboratory (3,5-dimercapto benzoic acid I, methyl 3,5-dimercapto benzoate II, 3,5-dimercapto toluene III, 4,6-dimercaptoisophthalaldehyde IV). A three-step synthesis strategy, involving the Newman-Kwart rearrangement as key step, for the formation of I, II and III was used, whereas compound IV required a different synthetic route. The four compounds were synthesized with relatively good yields (5-80% over 3, 4 or 6 steps) and were fully characterized using 1H-NMR, 13C-NMR, and high-resolution mass spectrometry. In a future extension of this work, compounds I-IV will be used as organic ligands in coordination polymers (CPs), which will be characterized in terms of electric and thermal properties.
|
16 |
Synthesis of O-linked Carbasugar Analogues of Galactofuranosides and N-linked NeodisaccharidesFrigell, Jens January 2010 (has links)
In this thesis, carbohydrate mimicry is investigated through the syntheses of carbohydrate analogues and evaluation of their inhibitory effects on carbohydrate-processing enzymes. Galactofuranosides are interesting structures because they are common motifs in pathogenic microorganisms but not found in mammals. M.tuberculosis, responsible for the disease tuberculosis, has a cell wall containing a repeating unit of alternating (1→5)- and (1→6)-linked β-D-galactofuranosyl residues. Synthetic inhibitors of the enzymes involved in the biosynthesis of the cell wall could find great therapeutic use. The first part of this thesis describes the first synthesis of the hydrolytically stable carbasugar analogue of galactofuranose, 4a-carba-β-D-Galf, and the synthetic work of synthesising β-linked pseudodisaccharides containing carba-Galf, which were tested for glycosyltransferease inhibitory activity. The pseudodisaccharide carba-Galf-(β1→5)-carba-Galf was found to be a moderate inhibitor of the glycosyltransferase GlfT2 of M.tuberculosis. The thesis also describes how a general method towards biologically relevant α-linked carba-Galf ethers was developed. The final part of this thesis is focussed on the formation of nitrogen-linked monosaccharides without the participation of the anomeric centre. Such a mode of coupling is called tail-to-tail neodisaccharide formation. The couplings of carbohydrate derivatives via the Mitsunobu reaction are successfully reported herein. The method describes the key introduction of an allylic alcohol in the electrophile and the subsequent functionalisation of the alkene to obtain the neodisaccharide. Two synthesised neodisaccharides presented in this thesis have been sent to be tested for glycosidase inhibitory activity. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript. Paper 5: Manuscript. Paper 6: Manuscript.
|
17 |
Design, Synthesis and Properties of Organic Sensitizers for Dye Sensitized Solar CellsKarlsson, Karl Martin January 2011 (has links)
This thesis gives a detailed description of the design and synthesis of new organic sensitizers for Dye sensitized Solar Cells (DSCs). It is divided in 7 chapters, where the first gives an introduction to the field of DSCs and the synthesis of organic sensitizers. Chapters 2 to 6 deal with the work of the author, starting with the first publication and the other following in chronological order. The thesis is completed with some concluding remarks (chapter 7). The DSC is a fairly new solar cell concept, also known as the Grätzel cell, after its inventor Michael Grätzel. It uses a dye (sensitizer) to capture the incident light. The dye is chemically connected to a porous layer of a wide band-gap semiconductor. The separation of light absorption and charge separation is different from the conventional Si-based solar cells. Therefore, it does not require the very high purity materials necessary for the Si-solar cells. This opens up the possibility of easier manufacturing for future large scale production. Since the groundbreaking work reported in 1991, the interest within the field has grown rapidly. Large companies have taken up their own research and new companies have started with their focus on the DSC. So far the highest solar energy to electricity conversion efficiencies have reached ~12%. The sensitizers in this thesis are based on triphenylamine or phenoxazine as the electron donating part in the molecule. A conjugated linker allows the electrons to flow from the donor to the acceptor, which will enable the electrons to inject into the semiconductor once they are excited. Changing the structure by introducing substituents, extending the conjugation and exchanging parts of the molecule, will influence the performance of the solar cell. By analyzing the performance, one can evaluate the importance of each component in the structure and thereby gain more insight into the complex nature of the dye sensitized solar cell. / QC 20110505
|
18 |
On the Versatility of Microwave-Assisted Chemistry : Exemplified by Applications in Medicinal Chemistry, Heterocyclic Chemistry and BiochemistryOrrling, Kristina M. January 2009 (has links)
Today, the demand for speed in drug discovery is constantly increasing, particularly in the iterative processes of hit validation and expansion and lead optimization. Irradiation with microwaves (MWs) has been applied in the area of organic synthesis to accelerate chemical reactions and to facilitate the generation of new chemical entities since 1986. In the work presented in this thesis, the use of MW-mediated heating has been expanded to address three fields of drug discovery, namely hit expansion, chemical library generation and genomics. In the first project, potential inhibitors of malaria aspartic proteases were designed and synthesized, partly by MW-assisted organic chemistry, and evaluated with regard to their inhibitory efficacy on five malaria aspartic proteases and their selectivity over two human aspartic proteases. The synthetic work included the development of fast and convenient methods of MW-assisted formation of thiazolidines and epoxy esters. Some of the resulting structures proved to be efficacious inhibitors of the aspartic protease that degrades haemoglobin in all four malaria parasites infecting man. No inhibitor affected the human aspartic proteases. Expedient, two-step, single-operation synthetic routes to heterocycles of medicinal interest were developed in the second and third projects. In the former, the use of a versatile synthon, Ph3PCCO, provided α,β-unsaturated lactones, lactams and amides within 5–10 minutes. In the latter project, saturated lactams were formed from amines and lactones in 35 minutes, in the absence of strong additives. These two MW-mediated protocols allowed the reduction of the reaction time from several hours or days to minutes. In the fourth project, a fully automated MW-assisted protocol for the important enzyme-catalysed polymerase chain reaction (PCR) was established. In addition, the PCR reaction could be performed in unusually large volumes, 2.5 mL and 15 mL, with yields corresponding to those from conventional PCR. Good amplification rates suggested that the thermophilic enzyme, Taq polymerase, was not affected by the MW radiation.
|
19 |
Pilicides and Curlicides : Design, synthesis, and evaluation of novel antibacterial agents targeting bacterial virulenceChorell, Erik January 2010 (has links)
New strategies are needed to counter the growing problem of bacterial resistance to antibiotics. One such strategy is to design compounds that target bacterial virulence, which could work separately or in concert with conventional bacteriostatic or bactericidal antibiotics. Pilicides are a class of compounds based on a ring-fused 2-pyridone scaffold that target bacterial virulence by blocking the chaperone/usher pathway in E. coli and thereby inhibit the assembly of pili. This thesis describes the design, synthesis, and biological evaluation of compounds based on the pilicide scaffold with the goal of improving the pilicides and expanding their utility. Synthetic pathways have been developed to enable the introduction of substituents at the C-2 position of the pilicide scaffold. Biological evaluation of these compounds demonstrated that some C-2 substituents give rise to significant increases in potency. X-ray crystallography was used to elucidate the structural basis of this improved biological activity. Furthermore, improved methods for the preparation of oxygen-analogues and C-7 substituted derivatives of the pilicide scaffold have been developed. These new methods were used in combination with existing strategies to decorate the pilicide scaffold as part of a multivariate design approach to improve the pilicides and generate structure activity relationships (SARs). Fluorescent pilicides were prepared using a strategy where selected substituents were replaced with fluorophores having similar physicochemical properties as the original substituents. Many of the synthesized fluorescent compounds displayed potent pilicide activities and can thus be used to study the complex interactions between pilicide and bacteria. For example, when E. coli was treated with fluorescent pilicides, it was found that the compounds were not uniformly distributed throughout the bacterial population, suggesting that the compounds are primarily associated to bacteria with specific properties. Finally, by studying compounds designed to inhibit the aggregation of Aβ, it was found that some compounds based on the pilicide scaffold inhibit the formation of the functional bacterial amyloid fibers known as curli; these compounds are referred to as 'curlicides'. Some of the curlicides also prevent the formation of pili and thus exhibit dual pilicide-curlicide activity. The potential utility of such 'dual-action' compounds was highlighted by a study of one of the more potent dual pilicide-curlicides in a murine UTI model were the compound was found to significantly attenuate virulence in vivo.
|
20 |
Diaryliodonium Salts : Development of Synthetic Methodologies and α-Arylation of EnolatesBielawski, Marcin January 2011 (has links)
This thesis describes novel reaction protocols for the synthesis of diaryliodonium salts and also provides an insight to the mechanism of α-arylation of carbonyl compounds with diaryliodonium salts. The first chapter gives a general introduction to the field of hypervalent iodine chemistry, mainly focusing on recent developments and applications of diaryliodonium salts. Chapter two describes the synthesis of electron-rich to electron-poor diaryliodonium triflates, in moderate to excellent yields from a range of arenes and iodoarenes. In chapter three, it is described that molecular iodine can be used together with arenes in a direct one-pot, three-step synthesis of symmetric diaryliodonium triflates. A large scale synthesis of bis(4-tert-butylphenyl)iodonium triflate is also described, controlled and verified by an external research group, further demonstrating the reliability of this methodology. The fourth chapter describes the development of a sequential one-pot synthesis of diaryliodonium salts from aryl iodides and boronic acids, furnishing symmetric and unsymmetric, electron-rich to electron-poor diaryliodonium tetrafluoroborates in moderate to excellent yields. This method was developed to overcome the regiochemical limitations imposed by the reaction mechanism in the protocols described in the preceding chapters. Chapter five describes a one-pot synthesis of heteroaromatic iodonium salts under similar conditions described in chapter two. The final chapter describes the reaction of enolates with chiral diaryliodonium salts or together with a phase transfer catalyst yielding racemic products. DFT calculations were performed, which revealed a low lying energy transition state (TS) between intermediates, which is believed to be responsible for the lack of selectivity observed in the experimental work. It is also proposed that a [2,3] rearrangement is preferred over a [1,2] rearrangement in the α-arylation of carbonyl compounds. The synthetic methodology described in this thesis is the most generally applicable, efficient and high-yielding to date for the synthesis of diaryliodonium salts, making these reagents readily available for various applications in synthesis.
|
Page generated in 0.1056 seconds