• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 52
  • 18
  • 13
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 229
  • 71
  • 70
  • 68
  • 66
  • 53
  • 42
  • 35
  • 26
  • 23
  • 21
  • 21
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Development of Bifunctional Peptides as Scaffolds for Bifunctional Catalysis and a Novel Method of Peptide Stapling Using Squaric Esters

Wayment, Adam X. 07 March 2024 (has links) (PDF)
Enzymes are some of nature's most powerful tools in chemical processes. However, their molecular complexity makes them difficult to synthesize and complicates their application in traditional organic synthesis. Peptides, a building block of enzymes, can be rapidly synthesized and have been used as a possible alternative in achieving enzyme-like catalysis. However, most peptide-based catalysts are limited in reaction-scope and are unable to incorporate traditional organic catalysts. We have designed a helical peptide scaffold capable of being functionalized with a wide variety of organocatalysts as well as transition-metal based catalysts. In order to understand how the peptide structure effects reactivity and selectivity we designed and studied a helical peptide functionalized with enamine and thiourea catalysts for the conjugate addition reaction of a variety of nitroolefins to cyclohexanone. By rationally engineering the peptide backbone, we were able to achieve up to 95%ee. Our studies emphasized the crucial role the peptide secondary structure plays in this reaction and its potential to serve as a general catalytic platform for future reaction development. Progress particularly toward the development of peptide scaffolds capable of binding transition-metals and performing organometallic catalysis is also described. Peptides are promising motifs in therapeutics. They are more specific and are able to bind to a larger range of targets than small-molecule based drugs while also having lower immunogenicity than larger biologic-based drugs. However, their poor in vivo stability is problematic for their more widespread use. Peptide stapling has been shown to increase peptide stability by covalently linking two ends of the peptide. Squaric esters are commonly used in conjugation chemistry and have shown to selectively react with primary amine nucleophiles, such as those on lysine sidechains. However, their potential to act as peptide stapling reagents has remained unexplored. We have developed a method whereby helical peptides can be stapled with squaric methyl ester on-resin. Peptides can be stapled at the i+1, i+4, and i+7 positions in good yields. The staple is also stable under the highly acidic conditions used to cleave the peptides from resin. Circular dichroism studies show that the staple is able to increase peptide helicity when compared with an unstapled control.
122

Enantioselective synthesis and reactivity of benzylic fluorides

Blessley, George Richard January 2013 (has links)
Benzylic fluorides are attractive target molecules for medicinal chemistry, agrochemicals and materials chemistry. The enantioselective synthesis of benzylic fluorides is challenging and few general methods exist. This thesis describes several approaches to the synthesis of benzylic fluoride targets, including enantioselective processes. Chapter 1: Reviews the properties, uses and synthetic approaches to fluorinated molecules, with a particular focus on benzylic fluorides and enantioselective syntheses. Chapter 2: Describes the fluorination cyclisation of prochiral indole precursors. The use of catalytic amounts of a bis-cinchona alkaloid gave good enantioselectivities for the cyclisation. Alcohol, tosylamine, amide and carbamate pendant nucleophiles all cyclised successfully to give quaternary benzylic fluorides in moderate yields and with enantioselectivities up to 92%. The substrate scope of the reaction is described, as well as methodology for deprotection of cyclised nitrogen nucleophiles. Chapter 3: Details an investigation of the Pd catalysed substitution of polycyclic benzylic fluorides by a range of nucleophiles and their relative reactivity in comparison to oxygen leaving groups. Modification of the methodology to enable reaction of monocyclic substrate substitution was enabled by the use of a protic solvent. Chemoselective reaction conditions were identified for selective reaction of Bn-F or Ar-Cl bonds and comparative reactivity studies were undertaken. The feasibility of Pd(0)/(II) catalysed nucleophilic C-F bond formation was examined. Chapter 4: The development of the defluorination methodology from Chapter 3 for secondary substrates is described. The stereochemical course of defluorination was probed, showing that displacement of fluoride is mechanistically similar to that of oxygen leaving groups. A kinetic resolution with a low selectivity was developed for access to enantioenriched benzylic fluorides.
123

Catalysis and materials development in organic chemistry

Berro, Adam Joseph 2009 August 1900 (has links)
The field of organic chemistry is divided into many subfields, which include polymer design and synthesis, transition metal catalysis and organocatalysis among a variety of others. Challenges in polymer design and synthesis can be highlighted pointedly in the use of photoresists for lithographic processing. Recent challenges in development of shorter wavelength sources has led to the need to develop new photoresist materials that can be exposed twice without any development steps in between. Two methods for addressing double exposure materials will be presented. Additionally, the areas of catalysis, whether transition metal or organic in nature, are important methods in organic synthesis. The mechanism of the addition of Gilman reagents to enones has been the subject of debate, and efforts to elucidate this mechanism will be presented. Finally, organocatalysis has expanded its scope into a variety of reactions previously only conducted with transition metal catalysts. Work towards an enantioselective allylic amination reaction using organocatalysis as well as absolute stereochemistry of the product will be explored. / text
124

Organic Brønsted acid-catalysed enantioselective N-acyliminium cyclisation cascades

Muratore, Michael Eric January 2010 (has links)
This thesis concerns the development of the first BINOL phosphoric acid (BPA) catalysed enantioselective N-acyliminium cyclisation reactions and their incorporation into domino sequences that allow for the construction of architecturally complex enantioenriched polycycles in a single step from easily accessible starting materials. More specifically, this thesis deals with the discovery of a BPA-catalysed enantioselective N-acyliminium cyclisation cascade of enol lactones and tryptamines. Its extension to a doubly catalysed process involving gold(I) to cycloisomerise alkynoic acids and a BPA to effect the enantioselective N-acyliminium cyclisation is presented. In addition, the exploitation of this method in highly diastereo- and enantioselective N-acyliminium cyclisations of oxoacids and tryptamines and in a site isolated base-catalysed Michael addition / acid-catalysed N-acyliminium cyclisation cascade is described. A study on the proposed mechanism and model for the origin of enantioselectivity is discussed, based on experimental data and a computational study. As a separate part of our programme, the development of a new class of stronger Brønsted acids, chiral benzenesulphonic acids, is described. The optimisation of the synthetic routes as well as the synthesis of a library of acids is presented and their assessment in precedented reactions is discussed.
125

New systems for catalytic asymmetric epoxidation

Parker, Phillip January 2009 (has links)
This thesis describes the catalytic asymmetric epoxidation of olefins mediated by chiral iminum salts. The first chapter introduces some of the most novel and effective catalytic asymmetric methods for preparing chiral oxiranes. The second chapter is divided into three sections. The first section of chapter two is dedicated to our efforts to develop new aqueous oxidative conditions using both hydrogen peroxide and sodium hypochlorite as efficient, green oxidants that remove the temperature boundaries observed with the use of Oxone® as the stoichiometric oxidant. A wider range of available temperatures was examined allowing optimization of both oxidative systems. Ethereal hydrogen peroxide was observed to mediate asymmetric epoxidation within an acetonitrile monophasic co-solvent system giving enantioselectivities of up to 56%. When sodium hypochlorite was used in a biphasic solvent system in conjunction with dichloromethane; it was observed to mediate oxidation of the substrate alkenes in up to 71% ee. The second and third sections of chapter two are dedicated to our efforts to synthesize chiral iminium salts as catalysts for asymmetric epoxidation based on a biphenyl azepinium salt catalyst structure. From previous work within the Page group, the asymmetric synthesis and subsequent defined stereochemistry of a chiral carbon atom α to the iminium nitrogen atom was shown to have significant effect on the enantiocontrol of epoxidation using the iminium salt catalyst. Work was completed on biphenyl azepinium salt catalysts, inserting an alkyl or aryl Grignard reagent into the iminium bond using a pre-defined dioxane unit as a chiral auxiliary. Oxidation of the subsequent azepine gave a single diastereoisomerically pure azepinium salt. The methyl analogue of this sub-family of azepinium catalysts has been shown to give up to 81% ee for epoxidation of 1-phenylcyclohexene, furthermore, the binaphthalene azepinium salt with an additional methyl group was also synthesized and was shown to give up to 93% for epoxidation of 1-phenylcyclohexene. Continuation of the substitution α to the nitrogen atom gave rise to an interesting tetracyclic (biphenyl) azepinum salt catalyst. Construction of an asymmetric oxazolidine ring unit encapsulating the azepinium nitrogen and one of the methylene carbon atoms was achieved. In doing so two chiral centres α to the nitrogen atom were generated. The azepinium chiral carbon atom was populated by an addition methyl group with variation in the substitution on the oxazolidine chiral carbon atom. The benzyl analogue of this sub-family of tetracyclic azepinium catalysts has shown to give up to 79% ee for epoxidation 1-phenylcyclohexene. The third chapter is the experimental section and is dedicated to the methods of synthesis and characterization of the compounds mentioned in the previous chapter. X-ray reports regarding the crystallographic analysis of the structures presented in chapter two are provided in appendix A. Appendix B contains the analytical spectra for the determination of enantiomeric excess of the epoxides.
126

Enantioselektivní reakce katalyzované chiralními heterocyklickými sloučeninami / Enantioselective reactions catalyzed by chiral heterocyclic compounds

Vlašaná, Klára January 2013 (has links)
Novel bis(tetrahydroisoquinoline) N,N'-dioxides 1,2 belong to the group of compounds with axial chirality that act as a Lewis base. These properties make them useful chiral catalysts in reactions such as allylation, opening of epoxides, etc. that exhibit high enantioselectivity. The prepared chiral bis(tetrahydroisoquinoline) N,N'-dioxides (R,Rax,R)-1, (R,Sax,R)-1, (Rax,R)-2 a (Sax,R)-2 were tested as catalysts in enantioselective allylation of variously substituted α,β−unsaturated aldehydes and dienals with allyltrichlorosilane (Scheme 1). All the catalysts exhibited high catalytic activity as well as high asymmetric induction (up to 96% for α,β- unsaturated aldehydes;1 up to 98 % for dienals). Appropriate choice of solvent as a reaction medium3,4 and substitution in α-position in aldehydes were the crucial factors for the successful course of the reaction. The catalytic activity of (R,Rax,R)-1 and (R,Sax,R)-1 was also tested in asymmetric opening of meso-epoxides with tetrachlorosilane (ee up to 69 %) (Scheme 2). N N O O O O 1 N N O O O 2 Scheme 1 Scheme 2 1) Vlašaná, K.; Hrdina, R.; Valterová, I.; Kotora, M. Eur. J. Org. Chem. 2010, 7040. 2) Kadlčíková, A.; Hrdina, R.; Valterová, I.; Kotora, M. Adv. Synth. Catal. 2009, 351,1279. 3) Hrdina, R.; Opekar, F.; Roithová, J.; Kotora, M. Chem. Commun....
127

Síntese de polímeros helicoidais para o reconhecimento de moléculas quirais e catálise assimétrica / Synthesis of helical polymers for recognation of chiral molecules and assymetric catalysis

Takata, Leandro Mitsuo Shimura 06 March 2015 (has links)
Os estudos desenvolvidos nessa tese tiveram como objetivo principal o desenvolvimento de materiais que pudessem ser aplicados tanto para o reconhecimento de moléculas quirais quanto para catálise. A estrutura sugerida baseou-se em nanopartículas de ouro funcionalizadas com polímeros helicoidais ligados à superfície do metal através de um átomo de telúrio. O trabalho foi desenvolvido em quatro etapas, consistindo a primeira dos estudos de funcionalização de nanopartículas de ouro com os organoditeluretos, onde foi observado que a presença de diferentes grupos funcionais não interfere no processo. A segunda etapa foi a investigação da tolerância do catalisador de ródio, necessário para a polimerização, à presença do átomo de telúrio. Os resultados mostraram que a atividade do catalisador é inibida na presença do ditelureto, contudo, o mesmo não ocorre quando o composto está ligado à superfície da nanopartícula. A terceira e quarta etapas foram o desenvolvimento de polímeros helicoidais baseados em estruturas poli(fenilacetilênica)s, sendo uma delas desenvolvida no laboratório do Prof. Alcindo Dos Santos (terceira etapa - Brasil) e a outra no laboratório do Prof. Eiji Yashima (quarta etapa - Japão). Nos estudos da terceira etapa foi dado foco a preparação de um polímero que pudesse ser aplicado tanto para o reconhecimento de moléculas quirais quanto para catálise assimétrica, contudo, o material obtido foi bastante insolúvel na maioria dos solventes orgânicos e são necessárias modificações na estrutura do monômero para aumentar a solubilidade do respectivo polímero. Na última etapa foi investigada a influência da estrutura helicoidal em reações assimétricas, sendo preparados copolímeros constituídos por uma unidade quiral sem atividade catalítica e uma unidade aquiral com atividade catalítica. Os resultados mostraram que a unidade aquiral é capaz de promover transformações assimétricas quando presente em uma estrutura helicoidal com um sentido preferencial da hélice Com o trabalho desenvolvido determinou-se que é possível a preparação dos materiais desejados através do crescimento do polímero na superfície da nanopartícula. Preparou-se com sucesso o monômero que deverá ficar ancorado no metal, restando sintetizar um monômero de estrutura adequada para realizar o reconhecimento de moléculas e catálise, como desejado / The studies done in this PhD thesis aimed the preparation of a material that could be used in the recognition of chiral molecules and as catalysts. Its structure was based on gold nanoparticles that was functionalized with helical polymers containing a tellurium atom as an attach point. The presentation of the results was divided in four parts and the first one was the studies about the functionalization of gold nanoparticles with organoditellurides as a model material. It was observed that the presence of various functional groups in organic tellurides does not interfere into the process. The second part was the investigation of the tolerance of the rhodium catalyst, necessary for the polymerization, to the presence of the tellurium atom. The results showed that the activity of the catalyst was inhibited in the presence of a ditelluride, however, the polymerization occured when it was linked in the nanoparticle. The third and fourth parts consisted in the synthesis of the helical polymer based on oly(phenylacetilene)s structure, which one of them was prepared in professor Dos Santos\'s laboratory (third step - Brazil) and the other part in the professor Yashima\'s laboratory (fourth step - Japan). The studies of the third step was the preparation of polymers that could be applied for the recognition of chiral molecules and assymetric catalysis, however, the obtained material was too insoluble in many organic solvents and it is necessary to modify the structure of the monomer to increase the solubility of the respective polymer. In the last step was investigated the influence of the helicity in assymetric reactions. It was prepared copolymers constituted by a chiral unit without any catalytic activity and an achiral unit containing the catalytic functional group. The results showed that the achiral unit was capable to promote assymetric transformation when embebed in a preferred-handed helical structure. In this work was determined that is possible to prepare the suggested materials raising the polymer in the nanoparticle surface. The monomer that will be anchored in the metal was successfully prepared, remaining synthetize the monomer with an appropriate structure to perform the recognition of molecules and for catalysis
128

3-Vinyl-1,2,4-triazines comme plateformes bifonctionnelles pour la synthèse de nouvelles structures tétrahydro-[1,6]-naphthyridines / 3-vinyl-1,2,4-triazines as bifunctional platforms towards new tetrahydro-[1,6]-naphthyridines scaffolds synthesis

Buttard, Floris 27 November 2018 (has links)
Le développement de nouvelles méthodes de synthèse de molécules hétérocycliques originales représente un enjeu actuel majeur en chimie organique. L’objectif est de fournir de nouveaux outils chimiques pour le développement de molécules actives en chimie médicinale et/ou pour l’étude de la biologie chimique, tout en contribuant à l’exploration de l’espace chimique.Dans ce contexte, le travail effectué au cours de cette thèse de doctorat a visé à élaborer de nouvelles voies de synthèse de motifs tétrahydro-[1,6]-naphtyridines. La pierre angulaire des méthodologies développées réside dans l’utilisation des 3-vinyl-1,2,4-triazines comme des plateformes synthétiques bifonctionnelles. Ces composés ont été développés pour réagir à la fois comme accepteurs de Michael et comme aza-diènes dansdes cycloadditions de Diels-Alder à demande électronique inverse. Un intérêt tout particulier a été porté à lamise au point de stratégies synthétiques innovantes, par des réactions en cascade permettant une synthèse rapide et efficace des molécules cibles, et des approches de catalyse organique visant des transformations énantiosélectives.La synthèse de nouvelles 3-vinyl-1,2,4-triazines et le développement de stratégies de réactions d’addition conjuguée/cycloadditions en cascade et de synthèses monotopes organocatalysées ont fournis l’accès à une vaste gamme de nouvelles tétrahydro-[1,6]-naphthyridines diversement substituées. / The development of new methods for the synthesis of original heterocyclic molecules represents a current concern in organic chemistry, aiming to furnish medicinal chemistry and chemical biology with new chemical tools and contribute to the exploration of chemical space.In this context, the work which was carried out during this PhD thesis focused on the elaboration of new approaches for the synthesis of tetrahydro-[1,6]-naphthyridine scaffolds. The original use of 3-vinyl-1,2,4-triazines as bifunctional synthetic platforms, able to react both as Michael acceptor and as aza-diene in inverse-electron-demand Diels-Alder cycloadditions, is the keystone our methodology is based upon. The development of domino reactions – allowing quick and efficient synthesis of targeted compounds – remaineda perpetual concern evolving along side our preoccupation to access enantioselective transformations relying on organocatalysis.The synthesis of new 3-vinyl-1,2,4-triazines platforms and the elaboration of domino conjugate addition/cycloadditions and orgonocatalyzed one-pot synthesis strategies enabled to synthetize a wide panelof new diversly substituted tetrahydro-[1,6]-naphthyridines compounds.
129

Synthèse et utilisation de nouveaux catalyseurs phosphorés à noyau ferrocénophane / New chiral phosphorus derivatives with ferrocenophane scaffolds : synthesis and catalytic behaviour

Néel, Mathilde 28 October 2011 (has links)
La catalyse est par définition l’utilisation d’une quantité sous stœchiométrique d’un composé accélérant une réaction, sans entrer dans son bilan réactionnel. Si le catalyseur est une molécule organique chirale, nous pouvons effectuer des réactions d’organocatalyse asymétrique. D’autre part, si les phosphines trivalentes sont largement employées comme ligands en catalyse organométallique, elles présentent également une réactivité complémentaire aux amines en organocatalyse. Une nouvelle phosphine chirale à noyau ferrocénophane, le FerroPHANE, a été récemment développée et utilisée avec succès au laboratoire. C’est dans ce contexte que s’inscrivent mes travaux de thèse portant à la fois sur l’étude de nouveaux processus catalytiques et la synthèse de nouveaux dérivés phosphorés chiraux. Tout d’abord, une réaction de cyclisation [3+2] entre des oléfines et des allénylphosphonates catalysée par le FerroPHANE a été développée (excès énantiomériques compris entre 84 et 91%). Dans un second temps, des groupements aryles ont été introduits sur le noyau ferrocénique du FerroPHANE afin de moduler sa réactivité et son énantiosélectivité. Enfin, une nouvelle famille de phosphoramidites chiraux à noyau ferrocénique a été synthétisée et utilisée dans la synthèse de complexes de platine. / Catalysis is the acceleration of a reaction by addition of a sub-stœchiometric amount of a compound. When catalyst is a chiral organic derivative, it is possible to obtain enantioenriched products by asymmetric organocatalysis. Moreover, if trivalent phosphines have been widely developed as ligand for organometallic catalysis, their reactivity is complementary to amines in organocatalysis. A new planar chiral phosphine with ferrocenophane scaffold was recently developed and successfully used in organocatalysed reactions by our team: FerroPHANE. In this context, we have been interesting both in the development of new enantioselective [3+2] cyclization reactions catalyzed by chiral trivalent phosphines and the development of new chiral phosphorus derivatives with ferrocenophane scaffolds. In a first part, new enantioselective [3+2] cyclization reactions between olefins and allenylphosphonates, catalyzed by FerroPHANE, have been successfully developed (enantiomeric excesses between 84 to 91%). In a second part, to modify the reactivity and the enantioselectivity of this new family of phosphines, aryl groups were introduced on the ferrocenyl scaffold. Finally, a new family of chiral phosphoramidites with ferrocenyl scaffold have been synthesized and applied to the synthesis of chiral platinum complexes.
130

Využití organokatalytického konceptu pro přípravu enantiomerně čistých laktamů / Preparation of enantiomerically pure lactams based on the organocatalysis

Humpl, Marek January 2012 (has links)
Different catalytic approaches have been applied to new -lactams preparations. olefin metathesis has been successfully performed with 3--methylidene--lactams. It was verified that 3--methylidene--lactams olefin metathesis is applicable to preparation of biologically active -lactam of Ezetimibe-type.

Page generated in 0.0552 seconds