• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 30
  • 18
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Stochastic Hybrid Dynamic Systems: Modeling, Estimation and Simulation

Siu, Daniel 01 January 2012 (has links)
Stochastic hybrid dynamic systems that incorporate both continuous and discrete dynamics have been an area of great interest over the recent years. In view of applications, stochastic hybrid dynamic systems have been employed to diverse fields of studies, such as communication networks, air traffic management, and insurance risk models. The aim of the present study is to investigate properties of some classes of stochastic hybrid dynamic systems. The class of stochastic hybrid dynamic systems investigated has random jumps driven by a non-homogeneous Poisson process and deterministic jumps triggered by hitting the boundary. Its real-valued continuous dynamic between jumps is described by stochastic differential equations of the It\^o-Doob type. Existing results of piecewise deterministic models are extended to obtain the infinitesimal generator of the stochastic hybrid dynamic systems through a martingale approach. Based on results of the infinitesimal generator, some stochastic stability results are derived. The infinitesimal generator and stochastic stability results can be used to compute the higher moments of the solution process and find a bound of the solution. Next, the study focuses on a class of multidimensional stochastic hybrid dynamic systems. The continuous dynamic of the systems under investigation is described by a linear non-homogeneous systems of It\^o-Doob type of stochastic differential equations with switching coefficients. The switching takes place at random jump times which are governed by a non-homogeneous Poisson process. Closed form solutions of the stochastic hybrid dynamic systems are obtained. Two important special cases for the above systems are the geometric Brownian motion process with jumps and the Ornstein-Uhlenbeck process with jumps. Based on the closed form solutions, the probability distributions of the solution processes for these two special cases are derived. The derivation employs the use of the modal matrix and transformations. In addition, the parameter estimation problem for the one-dimensional cases of the geometric Brownian motion and Ornstein-Uhlenbeck processes with jumps are investigated. Through some existing and modified methods, the estimation procedure is presented by first estimating the parameters of the discrete dynamic and subsequently examining the continuous dynamic piecewisely. Finally, some simulated stochastic hybrid dynamic processes are presented to illustrate the aforementioned parameter-estimation methods. One simulated insurance example is given to demonstrate the use of the estimation and simulation techniques to obtain some desired quantities.
22

Using ancestral information to search for quantitative trait loci in genome-wide association studies

Thompson, Katherine L. 29 August 2013 (has links)
No description available.
23

Computational Study of Stimulus-Induced Synchrony in the Cat Retina

Afghan, Muhammad K.N. January 2004 (has links)
No description available.
24

標的資產服從Ornstein Uhlenbeck Position Process之選擇權評價:漲跌幅限制下之應用

鄭啟宏, Cheng, Chi-Hung Unknown Date (has links)
本論文我們延伸Goldberg(1986)之結論,採用Ornstein Uhlenbeck positon process取代一般幾何布朗尼運動之假設來評價選擇權.Goldberg(1986)認為Ornstein Uhlenbeck positon process比幾何布朗尼運動更適合用來描述在不完全市場下之股價波動過程.我們在此波動過程的假設下,推倒出在風險中立的機率測度下歐式選擇權的評價模型及其避險參數,並將其結果與Black Scholes之模型作一比較,此評價模型亦可視為再不完全市場下的另一選擇權評價模型.此外,我們亦觀察在漲跌幅限制下股價波動之行為,發現股價具有三點特徵,而Ornstein Uhlenbeck positon process比幾何布朗尼運動更能貼切的表現出這些特徵,因此採用Ornstein Uhlenbeck positon process之選擇權評價模型較能合適地評價在漲跌幅限制下之選擇權價值. / In this thesis, we extend the approach of Goldenberg (1986) to consider Ornstein-Uhlenbeck position process as an alternative to Geometric Brownian Motion in modeling the underlying asset prices, and construct the option pricing model with this process. Goldenberg (1986) argued that Ornstein-Uhlenbeck position process is more consistent with the observed future prices in imperfect markets, and it could express the correlation of stock prices. Our model is an alternative option pricing model in imperfect market. We also investigate the behavior of stock prices in markets with the imposition of price limits. We find that the use of Ornstein-Uhlenbeck position process is more consistent with the characteristics of stock prices with price limit constraints than Geometric Brownian Motion. The use of Ornstein-Uhlenbeck position process could provide a more concise closed form of option pricing model when considering price limit constraints.
25

Nelson-type Limits for α-Stable Lévy Processes

Al-Talibi, Haidar January 2010 (has links)
<p>Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes.</p><p>In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms.</p><p>In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes.</p><p>In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.</p>
26

Využití nestandardních metod pro oceňování finančních derivátů / Využití nestandardních metod pro oceňování finančních derivátů

Švarcbach, Jan January 2013 (has links)
In this thesis we use nonstandard methods for the valuation of derivatives on electricity. We model the dynamics of electricity spot price as mean reverting processes on the hyperfinite binomial tree and by switching to the risk-neutral world we derive analytical formulas for the price of forward contracts. Both of our models are fitted to the German electricity market and forward price predictions are compared with forward products traded on the exchange. We conclude that both the Ornstein-Uhlenbeck and the Schwartz one factor model fit long-term forward contracts well while our prediction results for short-term forward prod- ucts are not conclusive due to low liquidity and alternative approaches might be suitable. 1
27

Kolmogorov Operators in Spaces of Continuous Functions and Equations for Measures

Manca, Luigi 17 March 2008 (has links) (PDF)
La thèse est consacrée à étudier les relations entre les Équations aux Derivées Partielles Stochastiques et l'operateur de Kolmogorov associé dans des espaces de fonctions continues.<br />Dans la première partie, la théorie de la convergence faibles des fonctions est mis au point afin de donner des résultats généraux sur les semi-groupes des Markov et leur générateur.<br />Dans la deuxième partie, des modèles de semi-groups de Markov associés à des équations aux dérivées partielles stochastiques sont étudiés. En particulier, Ornstein-Uhlenbeck, réaction-diffusion et équations de Burgers ont été envisagées. Pour chaque cas, le semi-groupe de transition et son générateur infinitésimal ont été étudiées dans un espace de fonctions continues.<br />Les résultats principaux montrent que l'ensemble des fonctions exponentielles fournit un Core pour l'opérateur de Kolmogorov. En conséquence, on prouve l'unicité de l'équation de Kolmogorov de mesures (autrement dit de Fokker-Planck).
28

Nelson-type Limits for α-Stable Lévy Processes

Al-Talibi, Haidar January 2010 (has links)
Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes. In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms. In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes. In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.
29

Change Point Estimation for Stochastic Differential Equations

Yalman, Hatice January 2009 (has links)
A stochastic differential equationdriven by a Brownian motion where the dispersion is determined by a parameter is considered. The parameter undergoes a change at a certain time point. Estimates of the time change point and the parameter, before and after that time, is considered.The estimates were presented in Lacus 2008. Two cases are considered: (1) the drift is known, (2) the drift is unknown and the dispersion space-independent. Applications to Dow-Jones index 1971-1974  and Goldmann-Sachs closings 2005-- May 2009 are given.
30

Change Point Estimation for Stochastic Differential Equations

Yalman, Hatice January 2009 (has links)
<p>A stochastic differential equationdriven by a Brownian motion where the dispersion is determined by a parameter is considered. The parameter undergoes a change at a certain time point. Estimates of the time change point and the parameter, before and after that time, is considered.The estimates were presented in Lacus 2008. Two cases are considered: (1) the drift is known, (2) the drift is unknown and the dispersion space-independent. Applications to Dow-Jones index 1971-1974  and Goldmann-Sachs closings 2005-- May 2009 are given.</p>

Page generated in 0.0455 seconds