351 |
Performance analysis of a medium-sized industrial reverse osmosis brackish water desalination plantAl-Obaidi, Mudhar A.A.R., Alsarayreh, Alanood A., Al-Hroub, A.M., Alsadaie, S., Mujtaba, Iqbal 30 July 2018 (has links)
Yes / The implementation of Reverse Osmosis (RO) technology is noticeably increased to produce freshwater from brackish and seawater resources. In this work, performance analysis of a multistage multi pass medium-sized spiral wound brackish water RO (BWRO) desalination plant (1200 m³/day) of Arab Potash Company (APC) located in Jordan is evaluated using modelling and simulation. For this purpose, a mathematical model for the spiral wound RO process based on the principles of solution diffusion model is developed. The model is then used to simulate the operating conditions of low-salinity brackish water RO (BWRO) desalination plant. The results obtained are then compared against the real industrial data of BWRO desalination plant of APC which shows a high-level of consistency. Finally, the model is used to analysis the impact of the operating parameters such as salinity, pressure, temperature, and flow rate on the plant performance. The sensitivity analysis confirms that both feed flow rate and operating pressure as the critical parameters that positively affect the product salinity.
|
352 |
Performance evaluation of a brackish water reverse osmosis pilot-plant desalination process under different operating conditions: Experimental studyAnsari, M., Al-Obaidi, Mudhar A.A.R., Hadadian, Z., Moradi, M., Haghighi, A., Mujtaba, Iqbal 28 March 2022 (has links)
Yes / The Reverse Osmosis (RO) input parameters have key roles in mass transport and performance indicators. Several studies can be found in open literature. However, an experimental research on evaluating the brackish water RO input parameters influence on the performance metrics with justifying the interference between them via a robust model has not been addressed yet. This paper aims to design, construct, and experimentally evaluate the performance of a 50 m3/d RO pilot-plant to desalinate brackish water in Shahid Chamran University of Ahvaz, Iran. Water samples with various salinity ranging from 1000 to 5000 ppm were fed to a semi-permeable membrane under variable operating pressures from 5 to 13 bar. By evaluating permeate flux and brine flowrate, permeate and brine salinities, membrane water recovery, and salt rejection, some logical relations were derived. The results indicated that the performance of an RO unit is largely dependent on feed pressure and feed salinity. At a fixed feed concentration, an almost linear relationship was found to relate feed pressure and both permeate and brine flowrates. Statistically, it was found that 13 bar feed pressure results in a maximum salt rejection of 98.8% at a minimum permeate concentration of 12 ppm. Moreover, 73.3% reduction in permeate salinity and 30.8% increase in brine salinity are reported when feed pressure increases from 5 to 13 bar. Finally, it is concluded that the water transport coefficient is a function of feed pressure, salinity, and temperature, which is experimentally estimated to be 2.8552 L/(m2 h bar).
|
353 |
Performance evaluation of a medium-scale industrial reverse osmosis brackish water desalination plant with different brands of membranes. A simulation study.Alsarayreh, Alanood A., Al-Obaidi, Mudhar A.A.R., Farag, Shekhah K.A.A., Patel, Rajnikant, Mujtaba, Iqbal 25 March 2022 (has links)
Yes / Brackish water can be considered an important source of fresh water, via desalination, especially for arid districts. Reverse Osmosis (RO) process has been successfully used to produce fresh water from brackish water sources. However, there is still the challenge of improving the performance of multistage RO desalination plants. From the selection of the RO configurations to the selection of the appropriate type of membranes and the operating conditions at the end determines the performance of RO process in terms of recovery, salt rejection, energy consumptions and ultimately the cost of production of freshwater. Using model-based simulation, this work attempts to investigate the most suitable types of membranes for an industrial scale RO plant from a set of different membrane brands that would attain the highest-performance at lowest specific energy consumption (SEC). As a case study, we considered a multistage multi-pass medium-scale RO plant (1200 m3/day) of Arab Potash Company (APC, Jordan) which produces high quality water for the boilers after pre-treatment stage. The simulation results confirmed that employment of the Filmtec BW30LE-440 would increase water recovery by about 22% besides reducing the product salinity and SEC by about 15% and 10%, respectively compared to the existing membrane.
|
354 |
Modelling the chlorophenol removal from wastewater via reverse osmosis process using a multilayer artificial neural network with genetic algorithmMohammad, A.T., Al-Obaidi, Mudhar A.A.R., Hameed, E.M., Basheer, B.N., Mujtaba, Iqbal 04 July 2022 (has links)
Yes / Reverse Osmosis (RO) can be considered as one of the most widely used technologies used to abate the existence of highly toxic compounds from wastewater. In this paper, a multilayer artificial neural network (MLANN) with Genetic Algorithm (GA) have been considered to build a comprehensive mathematical model, which can be used to predict the performance of an individual RO process in term of chlorophenol removal from wastewater. The MLANN model has been validated against 70 observational experimental datasets collected from the open literature. The MLANN model predictions have outperformed the predictions of several structures developed for the same chlorophenol removal using RO process based on performance in terms of coefficient of correlation, coefficient determination (R2) and average error (AVE). In this respect, two structures (4-2-2-1) and (4-8-8-1) were also used to study the effect of a number of neurons in the hidden layers based on the difference between the measured and ANN predicted values. The model responses clearly confirm the successfulness of estimating the chlorophenol rejection for network structure 4-8-8-1 based on a wide range of the control variables. This also represents a high consistency between the ANN model predictions and the experimental data.
|
355 |
Neural network based correlation for estimating water permeability constant in RO desalination process under foulingBarello, M., Manca, D., Patel, Rajnikant, Mujtaba, Iqbal 12 April 2014 (has links)
Yes / The water permeability constant, (Kw) is one of many important parameters that affect optimal design and operation of RO processes. In model based studies, e.g.within the RO process model, estimation of Kw is therefore important. There are only two available literature correlations for calculating the dynamic Kw values. However, each of them are only applicable for a given membrane type, given feed salinity over a certain operating pressure range. In this work, we develop a time dependent neural network (NN) based correlation to predict Kw in RO desalination processes under fouling conditions. It is found that the NN based correlation can predict the Kw values very closely to those obtained by the existing correlations for the same membrane type, operating pressure range and feed salinity. However, the novel feature of this correlation is that it is able to predict Kw values for any of the two membrane types and for any operating pressure and any feed salinity within a wide range. In addition, for the first time the effect of feed salinity on Kw values at low pressure operation is reported. While developing the correlation, the effect of numbers of hidden layers and neurons in each layer and the transfer functions is also investigated.
|
356 |
Effect of membrane properties on fouling in RO/NF membrane filtration of high organic groundwaterHobbs, Colin Michael 01 April 2000 (has links)
No description available.
|
357 |
Anammox-based Technologies for Sustainable Mainstream Wastewater Treatment: Process Development, Microbial Ecology and Mathematical ModelingLi, Xiaojin 08 March 2018 (has links)
The nitritation-anammox process is an efficient and cost-effective approach for biological nitrogen removal, but its application in treating mainstream wastewater remains a great challenge. The key objectives of this dissertation are to develop nitritation-anammox process to treat wastewater with low-nitrogen strength, understand the fundamental microbiology, and optimize its operation through experimental studies and mathematic modeling. Chapter 2 showed that the nitritation-anammox process has been successfully developed in an upflow membrane-aerated biofilm reactor, where pure oxygen was delivered via gas-permeable membrane module. Chapter 3 demonstrated that hybrid anaerobic reactor (HAR) could be an effective pretreatment method to provide a relatively low COD/N ratio for nitritation-anammox reactor. In Chapter 4, a novel mathematical model has been proposed to evaluate the minimum DO requirement for the nitritation-anammox reactor to achieve the maximum TN removal under various COD/N scenarios (controlled by HRTHAR). Chapters 5 and 6 designed an OsAMX system by linking nitritation-anammox to forward osmosis to remove the reverse-fluxed ammonium while using ammonium bicarbonate as a draw solute. The microbial community structures and dynamics, spatial distributions in these bioreactors were characterized by high-throughput sequencing and fluorescent in situ hybridization techniques. The studies in this dissertation have demonstrated that nitritation-anammox process is a promising alternative for sustainable mainstream treatment with the appropriate pretreatment approach and operation optimization. / PHD / Eutrophication due to the discharge of excessive N and P concentrations into water bodies is pervasive in the United States. The increasingly stringent nitrogen discharge criteria with minimized energy consumption and carbon footprint has become a great challenge for wastewater treatment facilities. Compared with nitrification-denitrification process, nitritation-anammox process is a cost-effective technology because it significantly decreases oxygen and organic carbon consumption. In Chapter 2, the nitritation-anammox process has been demonstrated for the first time to treat low nitrogen strength wastewater in an upflow membrane-aerated biofilm reactor with pure oxygen supply. The membrane aeration with upflow pattern have shown to promote oxygen mass transfer and biomass retention through the formation of biofilm and granules. Chapter 3 demonstrated that hybrid anaerobic reactor could be an effective method to pre-remove most organic matters for nitritation-anammox reactor so that anammox and ammonia-oxidizing bacteria can outcompete heterotrophic organisms. A mathematical model has also been developed in Chapter 4 to evaluate the effects of COD/N ratio on minimum DO requirement and microbial distributions in the nitritation-anammox reactor. Chapters 5 and 6 investigated the potential application of nitritation-anammox to remove reverse-fluxed ammonium leaked by forward osmosis using ammonium bicarbonate as a draw solute. These studies collectively showed that nitritation-anammox process could create opportunities for achieving sustainable wastewater treatment with minimum input of resources.
|
358 |
Wastewater Treatment by Spiral Wound Reverse Osmosis: Development and Validation of a Two Dimensional Process ModelAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 04 October 2016 (has links)
Yes / Reverse osmosis (RO) has become a significant method for removing salts and organic compounds from seawater and wastewater in recent decades. Spiral-wound module has been widely used due to a number of special features such as high packing density, premium separation and low operating cost. In this paper, a two-dimensional mathematical model is developed for the transport of dilute aqueous solutions through a spiral-wound RO module and the operational characteristics of the process under steady state conditions are analysed. The model is based on the solution-diffusion model coupled with the concentration polarization mechanism. This model yields a set of Differential and Algebraic Equations (DAEs), which are solved using the gPROMS software. The model is validated using experimental data from the literature for the rejection of dimethylphenol as solute in aqueous solutions. The model is then used to simulate the process under steady state conditions to gain deeper insight of the process.
|
359 |
Simulation of full-scale reverse osmosis filtration system for the removal of N-nitrosodimethylamine from wastewaterAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 22 December 2017 (has links)
Yes / Reverse osmosis (RO) is becoming one of the most promising technologies used in wastewater treatment because it offers high rate of contaminant rejection and lower energy consumption in comparison with other thermal treatment processes. Earlier research by the same authors in respect of a distributed one-dimensional mathematical model for a single spiral-wound RO membrane module based on the solution-diffusion model has been used in this paper to simulate the rejection of NDMA (N-nitrosodimethylamine) from wastewater in a series of seven RO elements full-scale treatment plant. Firstly, the applicability of this model has been evaluated using a simulation study and the results have been compared against experimental data gathered from the literature for a given plant. Secondly, further simulation and analysis studies are carried out to assess the performance of the plant for NDMA rejection and recovery rate under different operating conditions of feed pressure, flow rate, and concentration. For the studied RO configuration, it is concluded that a maximum of 55.1% NDMA rejection can be achieved, which confirms the remaining issue of lower NDMA rejection.
|
360 |
Simulation and optimisation of a two-stage/two-pass reverse osmosis system for improved removal of chlorophenol from wastewaterAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 03 February 2018 (has links)
Yes / Reverse osmosis (RO) has become a common method for treating wastewater and removing several harmful organic compounds because of its relative ease of use and reduced costs. Chlorophenol is a toxic compound for humans and can readily be found in the wastewater of a wide range of industries. Previous research in this area of work has already provided promising results in respect of the performance of an individual spiral wound RO process for removing chlorophenol from wastewater, but the associated removal rates have stayed stubbornly low. The literature has so far confirmed that the efficiency of eliminating chlorophenol from wastewater using a pilot-scale of an individual spiral wound RO process is around 83 %, compared to 97 % for dimethylphenol. This paper explores the potential of an alternative configuration of two-stage/two-pass RO process for improving such low chlorophenol rejection rates via simulation and optimisation. The operational optimisation carried out is enhanced by constraining the total recovery rate to a realistic value by varying the system operating parameters according to the allowable limits of the process. The results indicate that the proposed configuration has the potential to increase the rejection of chlorophenol by 12.4 % while achieving 40 % total water recovery at an energy consumption of 1.949 kWh/m³.
|
Page generated in 0.0517 seconds