81 |
Drying characteristics of Saskatoon berries under microwave and combined microwave-convection heatingReddy, Lakshminarayana 20 March 2006 (has links)
The study on dehydration of frozen saskatoon berries and the need for dried fruits has been strategically identified in the prairies. Our motivation was to find a suitable method for dehydration in order to extend saskatoon berry shelf life for preservation. Microwave, convection and microwave-convection combination drying processes were identified to finish-dry saskatoon berries after osmotic dehydration using sucrose and high fructose corn syrup (HFCS) sugar solutions. Osmotic dehydration removes moisture in small quantities and also introduces solutes into the fruit that acts as a preservative and also reduces the total drying time. <p>Due to the very short harvesting season of saskatoon berries, an accelerated process like microwave combination drying can bring down the moisture to safe storage level, immediately after harvest. Untreated and osmotically dehydrated berries were subjected to convection (control), microwave and microwave-convection combination drying conditions at different product drying temperatures (60, 70 and 80C) until final moisture content was 25% dry basis. A laboratory-scale microwave combination dryer was developed, built with temperature and moisture loss data acquisition systems using LabView 6i software. Thin-layer cross flow dryer was used for convection-only drying and for comparison. <p>Drying kinetics of the drying processes were studied and curve fitting with five empirical equations including Page equation, was carried to determine drying constant, R2 and standard error values. The microwave-combination drying method proved to be the best for drying saskatoon berries. Dehydrated product quality analysis by means of color changes, rehydration ratio measurements and observed structural changes with scanning electron microscope technique were the factors in drying method selection for saskatoon berries.<p> This research was instrumental in the modification and development of a novel drying system for high-moisture agricultural materials. Microwave-convection combination drying at 70oC, yields good results with higher drying rates and better end-product quality.
|
82 |
Mathematical techniques for the estimation of the diffusion coefficient and elimination constant of agents in subcutaneous tissueHersh, Lawrence T 01 June 2007 (has links)
The purpose of this work was to develop methods to estimate the diffusion coefficient and elimination constant for dexamethasone in subcutaneous tissue. Solutions to the diffusion equation were found for different conditions relevant to implantation and injection. These solutions were then used as models for measured autoradiography data where the unknown model parameters were the diffusion coefficient and the elimination constant. The diffusion coefficient and elimination constant were then estimated by curve fitting the measured data to these models. Having these estimates would be of practical importance since inflammation surrounding implantable glucose sensors may be controlled through local release of dexamethasone at the site of implantation. Derivation of the appropriate model, how the model was used to estimate D and k, and various specific profile examples were investigated in detail.
Osmotic pumps containing [3H]- dexamethasone were implanted into the subcutaneous tissue of rats. Digital autoradiography was used to measure the distribution of the [3H]-dexamethasone within the subcutaneous tissue at 6, 24, and 60 hours after implantation. Measured concentration profiles, near the catheter tip through which the agent was released, were compared to solutions of the diffusion equation in order to characterize drug diffusion coefficients and elimination constants. There was good agreement between the experimental data and the mathematical model used for estimation. The diffusion coefficient for dexamethasone in subcutaneous tissue was found to be D = 4.11+-1.77x10E-10 m2/s, and the elimination rate constant was found to be k = 3.65+-2.24x10E-5/s. Additionally, [3H]-dexamethasone was injected into the subcutaneous tissue of rats.
Digital autoradiography was again used to measure the distribution of the [3H]- dexamethasone within the subcutaneous tissue at 2.5 and 20 minutes after injection. Measured concentration profiles were again compared to a mathematical model of drug diffusion for injection. There was good agreement between the experimental data and the mathematical model. The diffusion coefficient found using this simple injection method was 4.01+-2.01x10E-10 m2/s. The simple method given here for the determination of the diffusion coefficient is general enough to be applied to other substances and tissues as well.
|
83 |
Regulation of Genome-Wide Transcriptional Stress Responses in Saccharomyces cerevisiaeCook, Kristen 02 January 2013 (has links)
In response to osmotic shock in Saccharomyces cerevisiae the MAP kinase Hog1 coordinates a large-scale transcriptional stress response, rapidly producing hundreds of copies of specified transcripts. Many of the most highly induced genes are bound and regulated by a transcription factor, Sko1, but lack the canonical binding site for this factor. We use ChIP-seq to demonstrate a stress-specific binding mode of Sko1. In stress, Sko1 binds to promoters in close proximity to Hog1, and another Hog1-regulated transcription factor, Hot1. This mode of Sko1 binding requires the physical presence of Hog1, but not Hog1 phosphorylation of Sko1. We identify candidate Sko1 and Hot1 binding motifs that predict co-localization of Sko1, Hot1, and Hog1 at promoters. We then demonstrate a role for Sko1 and Hot1 in directing Hog1-associated RNA Pol II to target genes, where Hog1 is present with the elongating polymerase. We suggest a possible model for Hog1 reprogramming of transcription in the early stages of the osmotic stress response. We then determine the extent and structure of the Hog1 controlled transcriptional program in a related stress, damage to the cell wall. We find that Sko1 and Hot1 have different apparent thresholds for activation by Hog1. In addition, in cell wall damage, Hog1 regulates an additional transcription factor, Rlm1, that is not involved in other Hog1 regulated stress responses. This factor is activated by the coincidence of a signal from Hog1 with that of another MAP kinase, Slt2.
|
84 |
Response of Day 8 Equine Embryos to Saccharide Solutions at Various TemperaturesFoster, Brittany 02 January 2013 (has links)
The response of Day Eight equine embryos to saccharide solutions was investigated as a first step in their potential use as non-permeating cryoprotective agents. Embryos were exposured to seven increasing concentrations of either sucrose or galactose at a temperature of 22°, 30° or 37°C. Each embryo was then rehydrated by exposing it to the same solutions in reverse. Embryos underwent osmotic dehydration, independent of treatment group, but embryo size had a significant effect on the response pattern. Embryos < 500µm dehydrated osmotically to 20% of their original volume. Those > 500µm exhibited a delayed response and only dehydrated to 40% of their original volume. When placed into decreasing concentrations, embryos partially rehydrated. Pre- and post-treatment embryo quality was compared and embryos were stained to determine the amount of apoptosis, with no difference in embryo survival between treatments. Results indicate that saccharides show promise for use in equine embryos < 500µm. / Ontario Veterinary College, Equine Guelph, Partnar Animal Health
|
85 |
Comparison of Pyramidal and Magnocellular Neuroendocrine Cell Volume Responses to Osmotic Stress and Stroke - Like StressRanepura, Nipuni 14 February 2011 (has links)
Acute brain cell swelling (cytotoxic edema) can occur in the first minutes of stroke, presumably as a result of brain cells taking up water. In extreme hypo-osmotic situations such as excessive water-loading by patients, uptake by brain cells can expand the brain, causing seizures. But is ischemic brain cell swelling the same as hypo-osmotic swelling?
Water can passively diffuse across the plasma membrane. However the presence of water channels termed aquaporins (AQP) facilitates passive water diffusion by 10-100 times. Unlike astrocytes, there is no evidence of water channels on neuronal plasma membrane. However, there is still much debate about which cells (neurons or astrocytes) swell during over-hydration or during stroke and if neurons and astrocytes can volume-regulate during osmotic stress.
The purpose of this study was to examine and compare the volume responses of PyNs and magnocellular neuroendocrine cells (MNCs) to acute osmotic challenge and to OGD. We examined MNCs because they are intrinsically osmosensitive to small changes (2-3 mOsm) of plasma osmolality. We also examined if the same neurons behave similarly in brain slices or when dissociated and if they respond differently to acute osmotic stress and stroke-like stress.
Our results indicate that during acute osmotic stress (±40 mOsm) half of dissociated PyNs and MNCs tended to show appropriate responses. MNCs in brain slices showed similar responses to when they were dissociated, while brain slice PyNs were less responsive than when dissociated. Exposure to OGD resulted in obvious differences between the two types of in vitro preparations. Dissociated PyNs and MNCs showed no consistency in their volume responses to 10 minutes of OGD. Dissociated neurons swelled, shrunk or were unchanged in about equal numbers. In contrast, brain slice PyNs underwent profound swelling whereas, brain slice MNCs showed minor volume decreases.
We conclude that about half of our dissociated neurons were too variable and unpredictable in their osmotic volume responses to be useful for osmotic studies. They also were too resistant to stroke-like stress to be good models for ischemia. Brain slice neurons were similar in their osmotic responses to dissociated neurons but proved to have consistent and predictable responses to stroke-like stress. / Thesis (Master, Neuroscience Studies) -- Queen's University, 2011-02-07 17:55:08.333
|
86 |
Heat tolerance mechanisms of an exceptional strain of Escherichia coliPleitner, Aaron M. Unknown Date
No description available.
|
87 |
Nuclear magnetic resonance probes of membrane biophysics: Structure and dynamicsLeftin, Avigdor January 2010 (has links)
The phospholipid membrane is a self-assembled, dynamic molecular system that may exist alone in association with only water, or in complex systems comprised of multiple lipid types and proteins. In this dissertation the intra- and inter-molecular forces responsible for the atomistic, molecular and collective equilibrium structure and dynamics are studied by nuclear magnetic resonance spectroscopy (NMR). The multinuclear NMR measurements and various experimental techniques are able to provide data that enable the characterization of the hierarchical spatio-temporal organization of the phospholipid membrane. The experimental and theoretical studies conducted target membrane interactions ranging from model systems composed of only water and lipids, to multiple component domain forming membranes that are in association with peripheral and trans-membrane proteins. These measurements consisit of frequency spectrum lineshapes and nuclear-spin relaxation rates obtained using 2 H NMR, 13 C NMR, 31 P NMR and 1 H NMR. The changes of these experimental observables are interpreted within a statistical thermodynamic framework that allows the membrane structure, activation energies, and correlation times of motion to be determined. The cases presented demonstrate how fundamental principles of NMR spectroscopy may be applied to a host of membranes, leading to the biophysical characterization of membrane structure and dynamics.
|
88 |
Influence of Salinous Solutions in the Pressure and Volume Modulations of the Intracranial CavityCeballos, Mariana 2011 August 1900 (has links)
Following a head concussion the intracranial pressure increases due to the impact, which cannot be adequately relieved because of the stiffness of the skull. Popular strategies aimed at decompressing the head consist in the administration of osmotic agents and skull removal.
The mechanical properties of bone can be affected by the administration of different solutions. If the malleability of skull is influenced by the osmotic agents that are administered to the patient then the pressure and volume in the intracranial cavity can also be modified following the treatment. In this thesis research, we hypothesize that administered osmotic agents can influence the mechanical properties of the skull, which can also impact the volume the cavity can hold and subsequently the pressure in the head.
This premise was tested by modifying existing mathematical models compiled through two general MATLAB codes that allow the computation of a non-symbolic differential-algebraic initial value problem. Three main features were changed in comparison to current models: the skull's influence on the pressure and volume modulation was tested (inputs were obtained from skull tested under different solutions); pulsatile flow was accounted for on the creation and movement of cerebrospinal fluid; and the input on the mechanical behavior of the cranial vessels was accounted for through previously published continuum-mechanics vessel-behavior models. To complete the model, materials and mechanical properties were obtained through laboratory experiments as well as data collection from existing literature.
From our bone test we were able to conclude that there are different factors that affect the mechanical properties of bone in various degrees. There is a mild statistical correlation (p-value 0.05) between the mechanical properties of bone obtained from different regions of the skull samples (2-14mm) and the DPBS and hDPBS solutions. Additionally there is a strong statistical difference (p-value 0.05) between the mechanical properties obtained from cross head speed (0.02, 0.002, and 0.004 (mm/s)) and solution variation (DI, DPBS and hDPBS). Finally, we were able to see that there seems to be a correlation between the mechanical properties of bone, the solution treatments and hypertension; although more test need to be developed to affirm this premise since our results are preliminary.
|
89 |
New insights into boar sperm function and survival from integrated field and laboratory studiesYeste Oliveras, Marc 17 December 2008 (has links)
En aquesta tesi s'han dut a terme dos tipus d'estudis diferents. L'objectiu del primer era la preservació del semen de porcí a 15ºC i el del segon eren els co-cultius homòlegs de cèl·lules epitelials de l'oviducte i espermatozoides de porcí. Pel que fa al primer estudi, s'ha observat que l'addició de la prostaglandina F2α i àcid hialurònic a les dosis seminals no malmena la qualitat espermàtica i que la tolerància dels espermatozoides als canvis d'osmolalitat del medi es pot correlacionar proves de fertilitat i prolificitat..Respecte el segon, s'ha determinat que les cèl·lules oviductals afecten els paràmetres espermàtics i que la presència d'espermatozoides sobreexpressa els gens que codifiquen per les proteïnes de xoc tèrmic. Així, se suggereix que aquestes proteïnes tenen algun paper en els processos reproductius que tenen lloc a l'oviducte, malgrat que s'hagi observat, mitjançant la tècnica de la interferència de l'RNA, que la HSP90AA1 no està implicada en el perllongament de la viabilitat espermàtica. / In this thesis, two different studies have been conducted. The aim of the first experimental chapter was boar sperm preservation at 15ºC, the second dealing with in vitro homologous co-culture of oviductal epithelial cells (OEC) and spermatozoa. Regarding the first, it has been observed that the addition of prostaglandin F2α and hyaluronic acid do not cause any harm on sperm quality, and the osmotic tolerance of spermatozoa can be correlated with fertility and prolificacy rates of a given ejaculate.As far as the second study is concerned, OEC specifically affect sperm functional parameters and the presence of spermatozoa upregulates the expression of some genes encoding for heat shock proteins. Some role in the reproductive processes taking place in the oviduct is therefore suggested for this protein family, even though it has been observed, by means of RNA interference, that HSP90AA1 is not the protein involved in prolonging sperm survival.
|
90 |
Subsoil constraints to root growth and water use efficiency in northern grain soils: osmotic and toxic effects of salinityAnna Sheldon Unknown Date (has links)
Abstract Salinity has considerable adverse effects on agriculture through reduction in plant growth and water use. Sodium chloride salinity has both an osmotic effect on plant water relations, and a toxic effect on cellular processes. The relative contribution of these two effects to plant growth depends on a range of factors including plant specific tolerance mechanisms, such as Na and Cl exclusion, compartmentation of ions at a whole plant and cellular level, and synthesis of organic osmotic compounds for plant osmotic adjustment. Plants growing in saline soil would also experience reduced plant available water, due to the additional osmotic effect on soil water potential. The effect of salinity on plant growth is further complicated by the interactions of environmental conditions with plant water and ion uptake. This thesis examines the osmotic and toxic effects of salinity on wheat (Triticum aestivum L.) and chickpea (Cicer arietinum L.), with particular focus on plant water availability, effects of Na and Cl toxicity, and temperature and humidity effects. While considerable research has been undertaken into the physiological response of plants to NaCl, our understanding of the capacity of plants to extract water from saline soils has remained largely theoretical. Total plant available water is largely determined by the matric potential of the soil. Presence of sodium chloride would have an additional osmotic effect, and previous theory stated that the salt tolerance of the plant determined the extent to which this osmotic potential reduced plant available water. The capacity of wheat and chickpea to extract water from saline soils was examined in a soil experiment where water stress was imposed on established plants, which were then grown until permanent wilting point (PWP) was reached. Wheat extracted to lower soil water potentials (-1.5 MPa), than chickpea (-900 kPa) in 0 NaCl treatments. Where salinity was low to moderate, plants were able to extract water to a PWP determined by the combined total of matric and osmotic potentials. Wheat extracted water to PWP in salinity treatments up to soil ECse of 5.3 dS/m, and chickpea to 2.9 dS/m. As salinity increased, toxic effects of salinity dominated, and water extraction by plants was significantly lower than that determined by total soil water potential. Solution culture experiments investigated the comparative toxic effects of Na, Cl and salt mixtures. Growth of wheat was reduced by Na toxicity, but not Cl toxicity, with Na causing a small, but significant additional reduction in growth, compared to high Cl or a salt mixture. Reductions in growth of 50% from control treatments occurred at -500 kPa for the Na treatment, and -630 kPa for the Cl and mixed salt treatments. In contrast, growth of chickpea was significantly reduced by both Na and Cl toxicity, with a large difference in growth compared to the salt mixture. Growth reductions of 50% occurred at -330 kPa for the Cl treatments, and -450 kPa for the Na treatment. A 50% growth reduction was not observed in the mixed salt treatment. Tolerance of saline conditions is reduced under stressful environmental conditions, such as high temperature and low relative humidity. Hot and dry conditions were shown to reduce the tolerance of saline conditions by both wheat and chickpea, compared to cool or humid conditions. Tissue concentrations of Na in wheat were disproportionately high in treatments with high evaporative demand, while tissue Cl was not related to evaporative demand. Tissue concentrations of Na in chickpea increased with temperature, but not relative humidity, while tissue Cl concentrations were highly correlated with evaporative demand. The relationships between NaCl salinity, plant water use, and environmental conditions were examined, allowing further development of the two phase salinity model. In particular, the transition point between the osmotic and toxic salinity effects. While the concentration of NaCl in the soil remains the primary factor, soil water status, environmental stresses and presence of other salts may dictate whether salinity be tolerated by the plant or not. The ability of the plant to extract water to PWP, as determined by total matric and osmotic potential has been identified as a useful indicator of salinity tolerance. The point at which toxicity of Na and/or Cl is observed is associated with a rapid increase in Na and Cl uptake by the shoot tissue, and a decrease in the amount of water the plant is able to extract from the soil. Within the osmotic region of salinity stress, the plant is able to extract water to PWP, but as NaCl becomes toxic the plant is unable to utilize this water.
|
Page generated in 0.0582 seconds