• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On G-(phi,nabla)-modules over the Robba ring

Ye, Shuyang 06 August 2019 (has links)
Sei $K$ eine endliche Erweiterung von $QQ_p $ und sei $R$ der Robba-Ring mit Koeffizienten in $K$ sein, die mit einem absoluten Frobenius-Lift $phi$ ausgestattet sind. Sei $F$ der Fixköper von $K$ unter $phi $ und sei $G$ eine verbundene reduktive Gruppe über $F$. Diese Arbeit untersucht $G$-$ (phi,nabla)$-Module über $R$, nämlich $(phi,nabla)$-Module über $R$ mit einer zusätzlicher $G$-Struktur. In Kapitel 3 konstruieren wir einen gefilterten Faserfunktor aus der Darstellungskategorie von $G$ auf endlich-dimensionalen $F$-Vektorräumenbis zur Kategorie von $QQ$-gefilterten Modulen über $R$, und beweisen, dass dieser Funktor spaltbar ist. In Kapitel 4 beweisen wir eine $G$-Version des $p$-adischen lokalen Monodromie-Satzes. In Kapitel 5 beweisen wir eine $G$-Version des logarithmischen lokalen Monodromie-Satzes unter bestimmten Annahmen. Als Anwendung fügen wir jedem $G$-$(phi,nabla)$-Modul eine Weil-Deligne-Darstellung der Weil-Gruppe $W_{kk((t))} $ in $G(K^{nr})$ an, wobei $kk$ der Restklassenkörper von $K$, und $K^{nr}$ die maximal unverzweigte Erweiterung von $K$ ist. / Let $K$ be a finite extension of $QQ_p$ and let $R$ be the Robba ring with coefficients in $K$, equipped with an absolute Frobenius lift $phi$. Let $F$ be the fixed field of $K$ under $phi$ and let $G$ be a connected reductive group over $F$. This thesis investigates $G$-$(phi,nabla)$-modules over $R$, namely $(phi,nabla)$-modules over $R$ with an additional $G$-structure. In Chapter 3, we construct a filtered fiber functor from the category of representations of $G$ on finite-dimensional $F$-vector spaces to the category of $QQ$-filtered modules over $R$, and prove that this functor is splittable. In Chapter 4, we prove a $G$-version of the $p$-adic local monodromy theorem. In Chapter 5, we prove a $G$-version of the logarithmic $p$-adic local monodromy theorem under certain assumptions. As an application, we attach to each $G$-$(phi,nabla)$-module a Weil-Deligne representation of the Weil group $W_{kk((t))}$ into $G(K^{nr})$, where $kk$ is the residue field of $K$, and $K^{nr}$ is the maximal unramified extension of $K$.

Page generated in 0.0665 seconds