• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, Analysis and Testing of Photoactive Heterojunction Semiconductors

Meng, Xiangchao January 2015 (has links)
Photocatalysis is a growing area of study for a clean and renewable energy source, particularly for the purification of water and air. Researchers have studied the combination of various semiconductors to create photocatalysts with improved activities, but little has been reported in selecting semiconductors based on their extrinsic type – namely n-type or p-type. In this study, a BiOBr (p-type)-Bi2WO6 (n-type) heterojunction semiconductor was synthesized by the facile hydrothermal method. The new materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and diffuse-reflection spectroscopy (DRS). Degradation of Rhodamine B was employed to measure the photocatalytic activity of the as-prepared photocatalysts. On the basis of these techniques, the influence of the synthesis conditions (namely, hydrothermal reaction time and temperature) and the degradation conditions (namely, initial concentration, pH of the initial dye water and amount of catalysts dosage) have been explored and discussed. Furthermore, effect of concentrations of the dopants (the atomic ratio of BiOBr and Bi2WO6 were 1:4, 1:1, 4:1) was examined by measuring the degradation rate of Rhodamine B. Finally, the mechanism of the degradation process and the enhancement effect of heterojunction were also interpreted by analyzing the quenching effect of the scavengers and the band structure. Conclusively, this study shed light on the benefits of using heterojunction photocatalysts, and also on the importance of considering the semiconductor type when forming composite photocatalysts.
2

Lighting and Sensing Applications of Nanostructured ZnO, CuO and Their Composites

Elsharif Zainelabdin, Ahmed ELtahir January 2012 (has links)
Low dimensional nanostructures of zinc oxide (ZnO), cupric oxide (CuO), and their composite nanostructures possess remarkable physical and chemical properties. Fundamental understanding and manipulation of these unique properties are crucial for all potential applications. Integration of nanostructured ZnO and CuO and their hybrid composites may play a significant role in the existing technology while paving the way for new exciting areas. Solution based low temperature synthesis of ZnO and CuO nanostructures have attracted extensive research efforts during the last decade. These efforts resulted in a plenteous number of nanostructures ranging from quantum dots into very complex three dimensional nanomaterials. Among the various low temperature synthesis methods the hydrothermal technique became one of the most popular approaches. The use of hydrothermal approach enabled the synthesis of diversity of nanomaterials on conventional and nonconventional substrates such as metals, glass, plastic and paper etc. The primary objectives of this thesis are to study and understand the characteristics of nanostructured ZnO, CuO, and their hybrid composites synthesized at low temperature. Likewise, the hybrid composites were successfully utilized to fabricate light emitting diodes and sensors. This thesis is organized into three major parts. In the beginning the synthesis and characterization of nanostructured ZnO, CuO, and their composite nanostructures are elaborated. Efforts have been made to understand the selective assembly of hierarchical CuO nanostructures on ZnO nanorods and to correlate it to the observed unique properties of the CuO/ZnO composite nanostructures. In the second part of the thesis fabrication, characterization, and device application of ZnO/p-polymer hybrid light emitting diode (HyLEDs) on flexible substrates are presented. In particular single and blended p-type light emissive polymers were controllably developed for potential greener and cheaper white light emitters. It was found that the HyLEDs exhibited rectifying diode characteristics together with white light emission covering the entire visible range. In the third part, pH and relative humidity sensing applications of CuO nanoflowers, and CuO/ZnO nanocorals, respectively, are described. A pH sensor based on CuO nanoflowers demonstrated good sensitivity and reproducibility over a wide range of pH. By taking the advantages of the selective growth of CuO nanostructures on ZnO nanorods and their naturally formed p-n heterojunction the realization of high sensitivity humidity sensor was achieved. The humidity sensor fabricated from the CuO/ZnO nanocorals displayed the highest sensitivity factor reported so far for its constituent materials; along with reasonably fast dynamic responses. A brief outlook into future challenges and opportunities are also presented in the last part of the thesis. / Nanophotonics
3

[pt] HETEROESTRUTURAS DE NANOMATERIAIS SENSÍVEIS À LUZ SOLAR: APRIMORAMENTO DE PRODUÇÃO FOTOCATALÍTICA DE HIDROGÊNIO E EXPLORAÇÃO DA GERAÇÃO DOS ROS PARA REMEDIAÇÃO AMBIENTAL / [en] SOLAR LIGHT-SENSITIVE HETEROSTRUCTURED NANOMATERIALS: ENHANCING PHOTOCATALYTIC HYDROGEN PRODUCTION AND PROBING ROS GENERATION FOR ENVIRONMENTAL REMEDIATION

EMANUEL DO COUTO PESSANHA 03 September 2024 (has links)
[pt] Heteroestruturas sensíveis à luz solar possuem grande potencial em diferentes aplicações direcionadas a um futuro limpo e sustentável, como a fotoprodução de hidrogênio (H2) e a remediação ambiental. No contexto da fotocatálise, o dióxido de titânio (TiO2) desempenha um papel crucial devido à sua ampla gama de aplicações, excelente estabilidade química, baixa toxicidade e custo relativamente baixo. No entanto, o TiO2 puro possui algumas desvantagens, como uma alta taxa de recombinação e baixa sensibilidade à luz solar, o que limita sua eficiência em aplicações fotocatalíticas. Portanto, o desenvolvimento contínuo de novos materiais com o objetivo de superar essas desvantagens é obrigatório. Entre as abordagens reportadas para superar as deficiências do TiO2 puro está a formação de heterojunções com outros semicondutores, melhorando a separação de cargas e, portanto, a eficiência fotocatalítica. Óxidos de níquel e óxidos de cobre são relatados como alternativas promissoras para a formação de heterojunções com TiO2, melhorando a transferência de carga e aumentando a absorção de luz no espectro visível do TiO2 puro. Esta tese apresenta diferentes estudos voltados para a síntese e caracterização de novos nanomateriais heteroestruturados eficientes para geração fotocatalítica de hidrogênio e degradação de poluentes perigosos. No primeiro estudo, foi relatada uma heterojunção p-n de NiO/TiO2 obtida via mecanoquímica, que apresentou uma taxa elevada de fotoprodução pelo sol de H2 em comparação com o TiO2 puro (8.85 mmol h-1 g-1 vs. 0.73 mmol h-1 g-1). Em todos os casos, a adição de NiO suportado em TiO2 reduziu a taxa de recombinação e aumentou a absorção de luz visível. Estudos de TEM, XPS e XAS demonstraram que uma dispersão homogênea e uma configuração de spin favorável dos pequenos aglomerados de NiO suportados em TiO2 foram responsáveis pela eficiência superior exibida pela amostra preparada via mecanoquímica, denominada NiO/P90- BM. Notavelmente, testes de ciclagem, de longo prazo e de envelhecimento mostraram que o fotocatalisador relatado é eficiente após vários ciclos, para uso prolongado e após longos períodos de armazenamento. Além disso, foram realizados estudos combinando EPR e a técnica de captura de spin para aprofundar na produção de superóxido e hidroxila pelas heterojunções de NiO/TiO2. Esses estudos forneceram insights sobre a aplicação potencial das heterojunções de NiO/TiO2 para a degradação fotocatalítica de poluentes gasosos e aquosos. Os resultados de EPR lançaram luz sobre a amostra de NiO/P90-BM como a mais eficiente na fotogeração de ROS, revelando que a síntese mecanoquímica resultou em uma arquitetura mais eficiente para a geração de radicais superóxido e hidroxila. Finalmente, foi relatada uma rota simples de química branda para preparar uma heteroestrutura de nanocubos de óxido cúprico (Cu2O NCs) e TiO2, denominada Cu2O NCs/TiO2, como um adsorvente eficiente para a tetraciclina (TC), que é um antibiótico de amplo espectro. FTIR e TGA foram realizados antes e após o processo de adsorção para demonstrar a adsorção de TC pela heteroestrutura Cu2O NCs/TiO2. Além disso, foram realizados testes com irradiação de luz visível para distinguir entre os processos de remoção por adsorção e fotocatalítica. Além disso, foram realizadas medições de EPR usando captura de spin para investigar a fotoprodução de ROS. Curiosamente, não houve fotoprodução de ROS detectável pela heteroestrutura Cu2O NCs/TiO2, demonstrando que a remoção de TC é exclusivamente devido à adsorção. Estes resultados contribuem para esclarecer uma discrepância na literatura quanto à atividade fotocatalítica dos Cu2O NCs sob luz visível. Coletivamente, esta pesquisa avançou o entendimento dos mecanismos fotocatalíticos e relatou novos nanomateriais heteroestruturados, destacando seu potencial para aplicações sustentáveis em diversos contextos relacionados ao meio ambiente e transição energética. / [en] Solar light-responsive heterostructures hold great potential in different applications toward a clean and sustainable future, such as hydrogen (H2) photoproduction and environmental remediation. In the context of photocatalysis, titanium dioxide (TiO2) plays a crucial role due to its wide range of applications, excellent chemical stability, low toxicity, and relatively low cost. However, neat TiO2 has some shortfalls, such as a high recombination rate and low sensitivity to solar light, which limits its efficiency in photocatalytic applications in general. Therefore, the continuous development of new materials aimed at improving these limitations is mandatory. Among the approaches to overcome the neat TiO2 shortfalls is the formation of heterojunctions with suitable semiconductors, improving charge separation and, therefore, photocatalytic efficiency. Nickel oxides and copper oxides are reported as promising alternatives for forming heterojunctions with TiO2, enhancing the charge transfer and broadening the light absorption in the visible spectrum. This thesis presents different studies aimed at the synthesis and characterization of new efficient heterostructured nanomaterials for photocatalytic hydrogen generation and hazardous pollutants abatement. In the first study, a NiO/TiO2 p-n heterojunction obtained via mechanochemistry was reported, which exhibited an improved solar-driven H2 photoproduction rate compared to neat TiO2 (8.85 mmol h-1g-1vs. 0.73 mmol h-1g-1). In all cases, the addition of NiO supported on TiO2 reduced the recombination rate and enhanced the visible light absorption. TEM, XPS, and XAS studies demonstrated that a homogenous dispersion and a favorable spin configuration of NiO clusters supported on TiO2 were responsible for the superior efficiency exhibited by the sample prepared via mechanochemistry, labeled as NiO/P90-BM. Noticeably, cycling, long-term, and aging tests have shown that the reported photocatalyst is efficient after several cycles, prolonged use, and after long periods of storage. Furthermore, studies combining EPR and the spin trapping technique were carried out to delve into the production of superoxide and hydroxyl by NiO/TiO2 heterojunctions. These studies provided insights into the potential application of the NiO/TiO2 heterojunctions for the photocatalytic degradation of gaseous and aqueous pollutants. The EPR results shed light on the NiO/P90-BM sample as the most efficient in ROS photogeneration, revealing that mechanochemical synthesis resulted in a more efficient architecture for generating superoxide and hydroxyl radicals. Besides, a simple soft chemistry route was reported to prepare a heterostructure of cuprous oxide nanocubes (Cu2O NCs) and TiO2, labeled as Cu2O NCs/TiO2, as an efficient adsorbent for tetracycline (TC), which is a broad-spectrum antibiotic. FTIR and TGA were carried out before and after the adsorption process to demonstrate the adsorption of TC by the Cu2O NCs/TiO2 heterostructure. Additionally, tests with visible light irradiation were performed to distinguish between adsorption and photocatalytic removal processes. In addition, EPR measurements were also carried out using spin trapping to investigate the ROS photoproduction. Interestingly, there was no detectable ROS photoproduction by the Cu2O NCs/TiO2 heterostructure, demonstrating that TC removal is solely due to adsorption. These results contribute to clarifying a discrepancy in the literature regarding the photocatalytic activity of Cu2O NCs under visible light. Collectively, this research has advanced the understanding of photocatalytic mechanisms and reported new heterostructured nanomaterials, while highlighting their potential for sustainable applications in diverse environmental and energy transition related contexts.
4

INVESTIGAÇÃO TEÓRICA DOS MATERIAIS ZnO:Ba E (Ba, Zn)TiO3

Lacerda, Luis Henrique da Silveira 09 March 2015 (has links)
Made available in DSpace on 2017-07-24T19:37:53Z (GMT). No. of bitstreams: 1 Luis Lacerda.pdf: 6157407 bytes, checksum: 67f47ee9ce5d908521ba3d0455add580 (MD5) Previous issue date: 2015-03-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Semiconductors materials are largely employed on development of innumerous optical and electronic due to their electronic, optical, ferroelectric and structural properties. Among the semiconductors materials stand out the zinc oxide (ZnO) and the barium titanate (BaTiO3) once shows excellent properties allied to low cost to obtaining. The ZnO is a simple oxide used in technology and largely investigated as an alternative to replace high cost material on development of electronic devices. Similarly, the BaTiO3 has perovskite crystalline structure whose properties present great technological interest. This work evaluated the effect of Ba presence on wurtzite structure and the influence of Zn atoms on tetragonal BaTiO3 properties. The obtained results indicates that the Ba atoms changes drastically the band structure of ZnO, resulting in the decrease of band gap for low quantities and the semiconductor type modification for doping above 25 %. The insertion of such atoms in wurtzite also causes the improvement of ferroelectric properties and the increase of unit cell lattice parameters. In case of Zn-doped BaTiO3, the doping process reduces radically de band gap and the ferroelectric properties regarding to pure material. Likewise, the semiconductor type is also modified by the Zn atoms presence. Based on obtained results for both crystalline systems, was proposed their employed in formation of p-n heterojunction. The heterostructure was evaluated through of four models. The obtained results for each one of these models were used to describe the interface region of ZnO/BaTiO3 heterojunction, proving that the atoms intercalation occurs and is responsible for heterostructure properties. Such properties present this heterostructure as a potential alternative for development of electronic devices, mainly the development of memory devices. The obtained heterostructure requires a low amount energy to electronic conduction process and shows high compatibility between the structure of heterojunction and the SiO2 substrate which is used in development of such devices. / Materiais semicondutores são amplamente empregados no desenvolvimento de vários dispositivos ópticos e eletrônicos variados devido às suas propriedades eletrônicas, ópticas, ferroelétricas e estruturais. Dentre os materiais semicondutores, destacam-se o óxido de zinco (ZnO) e o Titanato de Bário (BaTiO3) uma vez que apresentam excelentes propriedades aliadas ao baixo custo de síntese. O ZnO é um óxido simples amplamente empregado na tecnologia e largamente investigado como uma alternativa para substituição de materiais de custo elevado no desenvolvimento de dispositivos eletrônicos. Por sua vez, o BaTiO3 é um material de estrutura cristalina perovskita cujas propriedades são de grande interesse tecnológico. No presente trabalho avaliou-se o efeito da presença de átomos de Ba na estrutura wurtzita do ZnO e a influência dos átomos de Zn sobre as propriedades do BaTiO3 tetragonal. Os resultados indicaram que os átomos de bário alteram drasticamente a estrutura de bandas do ZnO, resultando na diminuição do band gap para pequenas quantidades e a modificação do tipo de semicondutor para dopagens superiores a 25%. A inserção de tais átomos na estrutura wurtzita também é responsável pelo aprimoramento das propriedades ferroelétricas do material, bem como pelo aumento dos parâmetros de rede da célula unitária. No caso da estrutura do BaTiO3 dopada com Zn observou-se a redução drástica do band gap para o material e a modificação do caráter semicondutor do material; entretanto, ocorreu a redução das propriedades ferroelétricas em relação ao BaTiO3 puro. Com base nos resultados obtidos para ambos os sistemas cristalinos, propôs-se a sua utilização para formação de uma heterojunção do tipo p-n. A heteroestrutura foi avaliada por meio de quatro modelos diferentes. Os resultados obtidos para cada um destes modelos foram utilizados para descrição da estrutura eletrônica da região de interface da heterojunção, comprovando que a intercalação de átomos na interface é observada e mostra-se responsável pelas propriedades observadas para a heteroestrutura. Tais propriedades apontam a heterojunção ZnO/BaTiO3 como uma alternativa em potencial para aplicação no desenvolvimento de dispositivos eletrônicos e, principalmente, no desenvolvimento de dispositivos de armazenamento de dados, devido a diminuição de energia necessária para condução eletrônica.

Page generated in 0.1026 seconds