• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 32
  • 13
  • 10
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Métallogenèse de l'uranium associée à des processus superficiels : l'exemple de la Jordanie centrale / Uranium metallogenesis related to surficial processes : the example of central Jordan

Fleurance, Stéphanie 13 December 2012 (has links)
Les différentes lithologies sédimentaires du Groupe Belqa présentent un enrichissement en P et en toute une série d'éléments sensibles aux conditions redox. Il est montré que l'enrichissement en U, Cu, Co, Mo, V résulte d'un dépôt syn-sédimentaire sous conditions suboxiques. Par contre, les éléments Cr, Ni, Cd, Zn sont beaucoup plus enrichis et requierent un flux exogénique de métal probablement relié à l'altération de roches ultrabasiques obductées à la même période au nord de cette région, lors de la collision de la plaque arabo-africaine avec la plaque eurasienne. Les phosphates représentent le principal hôte de l'uranium et des terres rares. L'analyse des apatites par ablation laser ICP-MS a permis de montrer leur évolution, depuis le stade sédimentaire-diagénétique, puis pyrométamorphique, jusqu'à l'altération supergène. La libération de l'uranium de la structure de l'apatite lors du pyrométamorphisme et de l'altération supergène permet sa mise à disposition pour la formation de minéralisations. Le pyrométamorphisme, dû à une combustion des niveaux riches en matière organique, est responsable de la déstabilisation des apatites, et de la formation de roches de compositions semblables à des ciments clinker/Portland. L'uranium a également été libéré de la structure de l'apatite par altération supergène. L'altération météorique et les fluides évaporitiques ont permis le lessivage et le transport des éléments (U, V) des roches carbonatées métamorphiques, et des carbonates puis a conduit au dépôt des vanadates d'uranyles dans les carbonates pulvérulents ayant subi une dissolution importante / The different lithologies of the Belqa Group present an enrichment in P and various redox sensitive elements. The U, Cu, Co, Mo, V enrichment results from synsedimentary deposition in suboxic conditions. However, the higher Cr, Ni, Cd, Zn enrichment requires an exogenic metal flux probably related to the terrestrial leaching of ultrabasic rocks obducted during the collision between African-Arabian and Eurasian plates to the north of the study region, at the same time. Phosphates are the main host lithology for uranium and rare earth elements. The analysis of the apatites by laser ablation ICP-MS shows their evolution along the sedimentary-diagenetic and pyrometamorphic stages, up to the supergene weathering. The uranium liberation from the apatite structure during the pyrometamorphism and surficial weathering led to its availability as supergene ore mineralization. Pyrometamorphism resulted from the combustion of organic-rich layers and caused the destabilization of the apatites, and the formation of rocks which have compositions similar to clinker/Portland cements. Uranium has been also released from the structure of the apatite by supergene alteration. Meteoric weathering and the evaporitic groundwater resulted in the leaching and the transport of the elements (U, V) from the metamorphic carbonated hills, and from the surrounding permeable limestone which has undergone dissolution in the near surface zone
32

Geology of the Phil Pico Mountain Quadrangle, Daggett County, Utah, and Sweetwater County, Wyoming

Anderson, Alvin D. 25 April 2008 (has links) (PDF)
Geologic mapping in the Phil Pico Mountain quadrangle and analysis of the Carter Oil Company Carson Peak Unit 1 well have provided additional constraints on the erosional and uplift history of this section of the north flank of the Uinta Mountains. Phil Pico Mountain is largely composed of the conglomeratic facies of the early Eocene Wasatch and middle to late Eocene Bridger Formations. These formations are separated by the Henrys Fork fault which has thrust Wasatch Formation next to Bridger Formation. The Wasatch Formation is clearly synorogenic and contains an unroofing succession from the adjacent Uinta Mountains. On Phil Pico Mountain, the Wasatch Formation contains clasts eroded sequentially from the Permian Park City Formation, Permian Pennsylvanian Weber Sandstone, Pennsylvanian Morgan Formation, and the Pennsylvanian Round Valley and Mississippian Madison Limestones. Renewed uplift in the middle and late Eocene led to the erosion of Wasatch Formation and its redeposition as Bridger Formation on the down-thrown footwall of the Henrys Fork fault. Field observations and analysis of the cuttings and lithology log from Carson Peak Unit 1 well suggest that initial uplift along the Henrys Fork Fault occurred in the late early or early middle Eocene with the most active periods of uplift in the middle and late Eocene (Figure 8, Figure 24, Appendix 1). The approximate post-Paleocene throw of the Henrys Fork fault at Phil Pico Mountain is 2070 m (6800 ft). The Carson Peak Unit 1 well also reveals that just north of the Henrys Fork fault at Phil Pico Mountain the Bridger Formation (middle to late Eocene) is 520 m (1710 ft) thick; an additional 460 m (1500 ft) of Bridger Formation lies above the well on Phil Pico Mountain. Beneath the Bridger Formation are 400 m (1180 ft) of Green River Formation (early to middle Eocene), 1520 m (5010 ft) of Wasatch Formation (early Eocene), and 850 m (2800 ft) of the Fort Union Formation (Paleocene). Stratigraphic data from three sections located east to west across the Phil Pico Mountain quadrangle show that the Protero-zoic Red Pine Shale has substantially more sandstone and less shale in the eastern section of the quadrangle. Field observations suggest that the Red Pine Shale undergoes a facies change across the quadrangle. However, due to the lack of continuous stratigraphic exposures, the cause of this change is not known.

Page generated in 0.0415 seconds