• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 9
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analysis of diagnostic climate model cloud parameterisations using large-eddy simulations

Rosch, Jan, Heus, Thijs, Salzmann, Marc, Mülmenstädt, Johannes, Schlemmer, Linda, Quaas, Johannes 28 April 2016 (has links) (PDF)
Current climate models often predict fractional cloud cover on the basis of a diagnostic probability density function (PDF) describing the subgrid-scale variability of the total water specific humidity, qt, favouring schemes with limited complexity. Standard shapes are uniform or triangular PDFs the width of which is assumed to scale with the gridbox mean qt or the grid-box mean saturation specific humidity, qs. In this study, the qt variability is analysed from large-eddy simulations for two stratocumulus, two shallow cumulus, and one deep convective cases. We find that in most cases, triangles are a better approximation to the simulated PDFs than uniform distributions. In two of the 24 slices examined, the actual distributions were so strongly skewed that the simple symmetric shapes could not capture the PDF at all. The distribution width for either shape scales acceptably well with both the mean value of qt and qs, the former being a slightly better choice. The qt variance is underestimated by the fitted PDFs, but overestimated by the existing parameterisations. While the cloud fraction is in general relatively well diagnosed from fitted or parameterised uniform or triangular PDFs, it fails to capture cases with small partial cloudiness, and in 10 – 30% of the cases misdiagnoses clouds in clear skies or vice-versa. The results suggest choosing a parameterisation with a triangular shape, where the distribution width would scale with the grid-box mean qt using a scaling factor of 0.076. This, however, is subject to the caveat that the reference simulations examined here were partly for rather small domains and driven by idealised boundary conditions.
22

Dynamic optimisation and control of batch reactors : development of a general model for batch reactors, dynamic optimisation of batch reactors under a variety of objectives and constraints and on-line tracking of optimal policies using different types of advanced control strategies

Aziz, Norashid January 2001 (has links)
Batch reactor is an essential unit operation in almost all batch-processing industries. Different types of reaction schemes (such as series, parallel and complex) and different order of model complexity (short-cut, detailed, etc. ) result in different sets of model equations and computer coding of all possible sets of model equations is cumbersome and time consuming. In this work, therefore, a general computer program (GBRM - General Batch Reactor Model) is developed to generate all possible sets of equations automatically and as required. GBRM is tested for different types of reaction schemes and for different order of model complexity and its flexibility is demonstrated. The above GBRM computer program is lodged with Dr. I. M. Mujtaba. One of the challenges in batch reactors is to ensure desired performance of individual batch reactor operations. Depending on the requirement and the objective of the process, optimisation in batch reactors leads to different types of optimisation problems such as maximum conversion, minimum time and maximum profit problem. The reactor temperature, jacket temperature and jacket flow rate are the main control variables governing the process and these are optimised to ensure maximum benefit. In this work, an extensive study on mainly conventional batch reactor optimisation is carried out using GBRM coupled with efficient DAEs (Differential and Algebraic Equations) solver, CVP (Control Vector Parameterisation) technique and SQP (Successive Quadratic Programming) based optimisation technique. The safety, environment and product quality issues are embedded in the optimisation problem formulations in terms of constraints. A new approach for solving optimisation problem with safety constraint is introduced. All types of optimisation problems mentioned above are solved off-line, which results to optimal operating policies. The off-line optimal operating policies obtained above are then implemented as set points to be tracked on-line and various types of advanced controllers are designed for this purpose. Both constant and dynamic set points tracking are considered in designing the controllers. Here, neural networks are used in designing Direct Inverse and Inverse-Model-Based Control (IMBC) strategies. In addition, the Generic Model Control (GMC) coupled with on-line neural network heat release estimator (GMC-NN) is also designed to track the optimal set points. For comparison purpose, conventional Dual Mode (DM) strategy with PI and PID controllers is also designed. Robustness tests for all types of controllers are carried out to find the best controller. The results demonstrate the robustness of GMC-NN controller and promise neural controllers as potential robust controllers for future. Finally, an integrated framework (BATCH REACT) for modelling, simulation, optimisation and control of batch reactors is proposed.
23

Gravity wave coupling of the lower and middle atmosphere.

Love, Peter Thomas January 2009 (has links)
A method of inferring tropospheric gravity wave source characteristics from middle atmosphere observations has been adapted from previous studies for use with MF radar observations of the equatorial mesosphere-lower thermosphere at Christmas Island in the central Pacific. The nature of the techniques applied also permitted an analysis of the momentum flux associated with the characterised sources and its effects on the equatorial mean flow and diurnal solar thermal tide. An anisotropic function of gravity wave horizontal phase speed was identified as being characteristic of convectively generated source spectra. This was applied stochastically to a ray-tracing model to isolate numerical estimates of the function parameters. The inferred spectral characteristics were found to be consistent with current theories relating convective gravity wave spectra to tropospheric conditions and parameters characterising tropical deep convection. The results obtained provide observational constraints on the model spectra used in gravity wave parameterisations in numerical weather prediction and general circulation models. The interaction of gravity waves with the diurnal solar thermal tide was found to cause an amplification of the tide in the vicinity of the mesopause. The gravity wave-tidal interactions were highly sensitive to spectral width and amplitude. Estimates were made of the high frequency gravity wave contribution to forcing the MSAO with variable results. The data used in the analysis are part of a large archive which now has the potential to provide tighter constraints on wave spectra through the use of the methods developed here. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1352362 / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2009
24

Understanding urban rainfall-runoff responses using physical and numerical modelling approaches

Green, Daniel January 2018 (has links)
This thesis provides a novel investigation into rainfall-runoff processes occurring within a unique two-tiered depth-driven overland flow physical modelling environment, as well as within a numerical model context where parameterisation and DEM/building resolution influences have been investigated using an innovative de-coupled methodology. Two approaches to simulating urban rainfall-runoff responses were used. Firstly, a novel, 9 m2 physical modelling environment consisting of a: (i) a low-cost rainfall simulator component able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a modular plot surface layer was used. Secondly, a numerical hydroinundation model (FloodMap2D-HydroInundation) was used to simulate a short-duration, high intensity surface water flood event (28th June 2012, Loughborough University campus). The physical model showed sensitivities to a number of meteorological and terrestrial factors. Results demonstrated intuitive model sensitivity to increasing the intensity and duration of rainfall, resulting in higher peak discharges and larger outflow volumes at the model outflow unit, as well as increases in the water depth within the physical model plot surface. Increases in percentage permeability were also shown to alter outflow flood hydrograph shape, volume, magnitude and timing due to storages within the physical model plot. Thus, a reduction in the overall volume of water received at the outflow hydrograph and a decrease in the peak of the flood event was observed with an increase in permeability coverage. Increases in the density of buildings resulted in a more rapid receding limb of the hydrograph and a steeper rising limb, suggesting a more rapid hydrological response. This indicates that buildings can have a channelling influence on surface water flows as well as a blockage effect. The layout and distribution of permeable elements was also shown to affect the rainfall-runoff response recorded at the model outflow, with downstream concentrated permeability resulting in statistically different hydrograph outflow data, but the layout of buildings was not seen to result in significant changes to the outflow flood hydrographs; outflow hydrographs appeared to only be influenced by the actual quantity and density of buildings, rather than their spatial distribution and placement within the catchment. Parameterisation of hydraulic (roughness) and hydrological (drainage rate, infiltration and evapotranspiration) model variables, and the influence of mesh resolution of elevation and building elements on surface water inundation outputs, both at the global and local level, were studied. Further, the viability of crowdsourced approaches to provide external model validation data in conjunction with dGPS water depth data was assessed. Parameterisation demonstrated that drainage rate changes within the expected range of parameter values resulted in considerable losses from the numerical model domain at global and local scales. Further, the model was also shown to be moderately sensitive to hydraulic conductivity and roughness parameterisation at both scales of analysis. Conversely, the parameterisation of evapotranspiration demonstrated that the model was largely insensitive to any changes of evapotranspiration rates at the global and local scales. Detailed analyses at the hotspot level were critical to calibrate and validate the numerical model, as well as allowing small-scale variations to be understood using at-a-point hydrograph assessments. A localised analysis was shown to be especially important to identify the effects of resolution changes in the DEM and buildings which were shown to be spatially dependent on the density, presence, size and geometry of buildings within the study site. The resolution of the topographic elements of a DEM were also shown to be crucial in altering the flood characteristics at the global and localised hotspot levels. A novel de-coupled investigation of the elevation and building components of the DEM in a strategic matrix of scenarios was used to understand the independent influence of building and topographic mesh resolution effects on surface water flood outputs. Notably, the inclusion of buildings on a DEM surface was shown to have a considerable influence on the distribution of flood waters through time (regardless of resolution), with the exclusion of buildings from the DEM grid being shown to produce less accurate results than altering the overall resolution of the horizontal DEM grid cells. This suggests that future surface water flood studies should focus on the inclusion and representation of buildings and structural features present on the DEM surface as these have a crucial role in modifying rainfall-runoff responses. Focus on building representation was shown to be more vital than concentrating on advances in the horizontal resolution of the grid cells which make up a DEM, as a DEM resolution of 2 m was shown to be sufficiently detailed to conduct the urban surface water flood modelling undertaken, supporting previous inundation research.
25

Physical parameterisations for a high resolution operational numerical weather prediction model / Paramétrisations physiques pour un modèle opérationnel de prévision météorologique à haute résolution

Gerard, Luc 31 August 2001 (has links)
Les modèles de prévision opérationnelle du temps résolvent numériquement les équations de la mécanique des fluides en calculant l'évolution de champs (pression, température, humidité, vitesses) définis comme moyennes horizontales à l'échelle des mailles d'une grille (et à différents niveaux verticaux).<p><p>Les processus d'échelle inférieure à la maille jouent néanmoins un rôle essentiel dans les transferts et les bilans de chaleur, humidité et quantité de mouvement. Les paramétrisations physiques visent à évaluer les termes de source correspondant à ces phénomènes, et apparaissant dans les équations des champs moyens aux points de grille.<p><p>Lorsque l'on diminue la taille des mailles afin de représenter plus finement l'évolution des phénomènes atmosphériques, certaines hypothèses utilisées dans ces paramétrisations perdent leur validité. Le problème se pose surtout quand la taille des mailles passe en dessous d'une dizaine de kilomètres, se rapprochant de la taille des grands systèmes de nuages convectifs (systèmes orageux, lignes de grain).<p><p>Ce travail s'inscrit dans le cadre des développements du modèle à mailles fines ARPÈGE ALADIN, utilisé par une douzaine de pays pour l'élaboration de prévisions à courte échéance (jusque 48 heures).<p><p>Nous décrivons d'abord l'ensemble des paramétrisations physiques du modèle.<p>Suit une analyse détaillée de la paramétrisation actuelle de la convection profonde. Nous présentons également notre contribution personnelle à celle ci, concernant l'entraînement de la quantité de mouvement horizontale dans le nuage convectif.<p>Nous faisons ressortir les principaux points faibles ou hypothèses nécessitant des mailles de grandes dimensions, et dégageons les voies pour de nouveaux développements.<p>Nous approfondissons ensuite deux des aspects sortis de cette discussion: l'usage de variables pronostiques de l'activité convective, et la prise en compte de différences entre l'environnement immédiat du nuage et les valeurs des champs à grande échelle. Ceci nous conduit à la réalisation et la mise en œuvre d'un schéma pronostique de la convection profonde.<p>A ce schéma devraient encore s'ajouter une paramétrisation pronostique des phases condensées suspendues (actuellement en cours de développement par d'autres personnes) et quelques autres améliorations que nous proposons.<p>Des tests de validation et de comportement du schéma pronostique ont été effectués en modèle à aire limitée à différentes résolutions et en modèle global. Dans ce dernier cas l'effet du nouveau schéma sur les bilans globaux est également examiné.<p>Ces expériences apportent un éclairage supplémentaire sur le comportement du schéma convectif et les problèmes de partage entre la schéma de convection profonde et le schéma de précipitation de grande échelle.<p><p>La présente étude fait donc le point sur le statut actuel des différentes paramétrisations du modèle, et propose des solutions pratiques pour améliorer la qualité de la représentation des phénomènes convectifs.<p><p>L'utilisation de mailles plus petites que 5 km nécessite enfin de lever l'hypothèse hydrostatique dans les équations de grande échelle, et nous esquissons les raffinements supplémentaires de la paramétrisation possibles dans ce cas.<p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
26

Analysis of diagnostic climate model cloud parameterisations using large-eddy simulations: Analysis of diagnostic climate model cloud parameterisations usinglarge-eddy simulations

Rosch, Jan, Heus, Thijs, Salzmann, Marc, Mülmenstädt, Johannes, Schlemmer, Linda, Quaas, Johannes January 2015 (has links)
Current climate models often predict fractional cloud cover on the basis of a diagnostic probability density function (PDF) describing the subgrid-scale variability of the total water specific humidity, qt, favouring schemes with limited complexity. Standard shapes are uniform or triangular PDFs the width of which is assumed to scale with the gridbox mean qt or the grid-box mean saturation specific humidity, qs. In this study, the qt variability is analysed from large-eddy simulations for two stratocumulus, two shallow cumulus, and one deep convective cases. We find that in most cases, triangles are a better approximation to the simulated PDFs than uniform distributions. In two of the 24 slices examined, the actual distributions were so strongly skewed that the simple symmetric shapes could not capture the PDF at all. The distribution width for either shape scales acceptably well with both the mean value of qt and qs, the former being a slightly better choice. The qt variance is underestimated by the fitted PDFs, but overestimated by the existing parameterisations. While the cloud fraction is in general relatively well diagnosed from fitted or parameterised uniform or triangular PDFs, it fails to capture cases with small partial cloudiness, and in 10 – 30% of the cases misdiagnoses clouds in clear skies or vice-versa. The results suggest choosing a parameterisation with a triangular shape, where the distribution width would scale with the grid-box mean qt using a scaling factor of 0.076. This, however, is subject to the caveat that the reference simulations examined here were partly for rather small domains and driven by idealised boundary conditions.
27

Detekce křivek v obraze / Curve Detection in Images

Labaj, Tomáš January 2009 (has links)
This thesis deals with curve detection in images. First, current methods used in this area of image processing are summarized and described. Main topic of this thesis is a comparison of methods of parametric curve detection, such as Hough transformation and RANSAC-based methods. These methods are compared according to several criteria which are the most important for precise edge detection.
28

Dynamic optimisation and control of batch reactors. Development of a general model for batch reactors, dynamic optimisation of batch reactors under a variety of objectives and constraints and on-line tracking of optimal policies using different types of advanced control strategies.

Aziz, Norashid January 2001 (has links)
Batch reactor is an essential unit operation in almost all batch-processing industries. Different types of reaction schemes (such as series, parallel and complex) and different order of model complexity (short-cut, detailed, etc. ) result in different sets of model equations and computer coding of all possible sets of model equations is cumbersome and time consuming. In this work, therefore, a general computer program (GBRM - General Batch Reactor Model) is developed to generate all possible sets of equations automatically and as required. GBRM is tested for different types of reaction schemes and for different order of model complexity and its flexibility is demonstrated. The above GBRM computer program is lodged with Dr. I. M. Mujtaba. One of the challenges in batch reactors is to ensure desired performance of individual batch reactor operations. Depending on the requirement and the objective of the process, optimisation in batch reactors leads to different types of optimisation problems such as maximum conversion, minimum time and maximum profit problem. The reactor temperature, jacket temperature and jacket flow rate are the main control variables governing the process and these are optimised to ensure maximum benefit. In this work, an extensive study on mainly conventional batch reactor optimisation is carried out using GBRM coupled with efficient DAEs (Differential and Algebraic Equations) solver, CVP (Control Vector Parameterisation) technique and SQP (Successive Quadratic Programming) based optimisation technique. The safety, environment and product quality issues are embedded in the optimisation problem formulations in terms of constraints. A new approach for solving optimisation problem with safety constraint is introduced. All types of optimisation problems mentioned above are solved off-line, which results to optimal operating policies. The off-line optimal operating policies obtained above are then implemented as set points to be tracked on-line and various types of advanced controllers are designed for this purpose. Both constant and dynamic set points tracking are considered in designing the controllers. Here, neural networks are used in designing Direct Inverse and Inverse-Model-Based Control (IMBC) strategies. In addition, the Generic Model Control (GMC) coupled with on-line neural network heat release estimator (GMC-NN) is also designed to track the optimal set points. For comparison purpose, conventional Dual Mode (DM) strategy with PI and PID controllers is also designed. Robustness tests for all types of controllers are carried out to find the best controller. The results demonstrate the robustness of GMC-NN controller and promise neural controllers as potential robust controllers for future. Finally, an integrated framework (BATCH REACT) for modelling, simulation, optimisation and control of batch reactors is proposed. / University Sains Malaysia
29

Low cost integration of Electric Power-Assisted Steering (EPAS) with Enhanced Stability Program (ESP)

Soltani, Amirmasoud January 2014 (has links)
Vehicle Dynamics Control (VDC) systems (also known as Active Chassis systems) are mechatronic systems developed for improving vehicle comfort, handling and/or stability. Traditionally, most of these systems have been individually developed and manufactured by various suppliers and utilised by automotive manufacturers. These decentralised control systems usually improve one aspect of vehicle performance and in some cases even worsen some other features of the vehicle. Although the benefit of the stand-alone VDC systems has been proven, however, by increasing the number of the active systems in vehicles, the importance of controlling them in a coordinated and integrated manner to reduce the system complexity, eliminate the possible conflicts as well as expand the system operational envelope, has become predominant. The subject of Integrated Vehicle Dynamics Control (IVDC) for improving the overall vehicle performance in the existence of several VDC active systems has recently become the topic of many research and development activities in both academia and industries Several approaches have been proposed for integration of vehicle control systems, which range from the simple and obvious solution of networking the sensors, actuators and processors signals through different protocols like CAN or FlexRay, to some sort of complicated multi-layered, multi-variable control architectures. In fact, development of an integrated control system is a challenging multidisciplinary task and should be able to reduce the complexity, increase the flexibility and improve the overall performance of the vehicle. The aim of this thesis is to develop a low-cost control scheme for integration of Electric Power-Assisted Steering (EPAS) system with Enhanced Stability Program (ESP) system to improve driver comfort as well as vehicle safety. In this dissertation, a systematic approach toward a modular, flexible and reconfigurable control architecture for integrated vehicle dynamics control systems is proposed which can be implemented in real time environment with low computational cost. The proposed control architecture, so named “Integrated Vehicle Control System (IVCS)”, is customised for integration of EPAS and ESP control systems. IVCS architecture consists of three cascade control loops, including high-level vehicle control, low-level (steering torque and brake slip) control and smart actuator (EPAS and EHB) control systems. The controllers are designed based on Youla parameterisation (closed-loop shaping) method. A fast, adaptive and reconfigurable control allocation scheme is proposed to coordinate the control of EPAS and ESP systems. An integrated ESP & ESP HiL/RCP system including the real EPAS and Electro Hydraulic Brake (EHB) smart actuators integrated with a virtual vehicle model (using CarMaker/HiL®) with driver in the loop capability is designed and utilised as a rapid control development platform to verify and validate the developed control systems in real time environment. Integrated Vehicle Dynamic Control is one of the most promising and challenging research and development topics. A general architecture and control logic of the IVDC system based on a modular and reconfigurable control allocation scheme for redundant systems is presented in this research. The proposed fault tolerant configuration is applicable for not only integrated control of EPAS and ESP system but also for integration of other types of the vehicle active systems which could be the subject of future works.
30

Submicrometre aerosol emissions from sea spray and road traffic

Mårtensson, Monica January 2007 (has links)
<p>The uncertainty of the climate and health effects of aerosols is still large, one important reason being lack of knowledge of the primary emissions. This thesis combines laboratory and field experiments, and process modelling in an effort to better quantify the submicrometre aerosol emissions and to understand some of the processes in the atmosphere.</p><p>A parameterisation was derived for the source flux of sea salt particles (particles m<sup>-2 </sup>s<sup>-1</sup>) in the size range 0.02-2.8 µm dry diameter (D<sub>p</sub>), it is the first parameterisation to almost cover two full decades of the submicrometre sea salt aerosol production, and to include the effect of water temperature. This sea salt parameterisation was validated for temperate water in the 0.1-1.1 μm D<sub>p</sub> range using in situ size resolved emissions of marine aerosol particles, which were measured with the eddy covariance (EC) method. For periods sampled air was heated to 300ºC in order to evaporate semi-volatile organics and isolate the sea salt fraction. Comparisons with the total aerosol emissions suggest that in these emissions organic carbon and sea salt are internally mixed in the same particles. Finally an aerosol dynamics model was modified for marine conditions. In the model parameterised emissions of sea salt was included together with aerosol dynamics, chemistry and clouds representative for the marine boundary layer. The sea salt emissions are together with secondary sulphate, and cloud processing able to reproduce a typical marine aerosol size distribution and cloud condensation nuclei population.</p><p>Measurements with the EC method of the road traffic related aerosol source number flux for D<sub>p</sub>>0.011 µm show that the major part of the aerosol fluxes is due to road traffic emissions. Both an emission factor for the whole fleet mix in Stockholm (1.4x10<sup>14</sup> vehicle<sup>-1</sup> km<sup>-1</sup>) and separate emission factors for light- and heavy-duty vehicles (HDV) were deduced. The result shows that during weekdays 70-80% of the emissions come from HDV.</p>

Page generated in 0.1863 seconds