• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 11
  • 11
  • 3
  • 2
  • 1
  • Tagged with
  • 91
  • 91
  • 34
  • 18
  • 18
  • 18
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigation on flexural behavior of steel-UHPC composite beams with steel shear keys

Dafu,Cao,, Ge, W., Zhang, Z., Ashour, Ashraf, Jiang, H., Liu, Y., Li, S., Cao, D. 13 September 2023 (has links)
Yes / To investigate the flexural performance of steel-UHPC (ultra-high performance concrete) composite beams with welded steel shear keys (SSK), eight specimens were experimental studied by four-point bending test. The finite element (FE) models were established based on the experimental results, then, the failure mode, load, deflection, strain and relative interface slip were parametric analyzed. The influences of strength, dimensions and configuration of upper concrete slab, steel beams as well as SSK on flexural performance, in terms of load-deflection response, ductility and ultimate energy dissipation, were studied. The experimental results show that steel-UHPC composite beams have superior bearing capacity, deformation capacity, ductility and energy dissipation ability when compared with steel-NSC (normal strength concrete) composite counterparts. Increasing the height of upper concrete slab has a significant effect on improving bending capacity and flexural stiffness, while increasing the width has a significant effect on enhancing deformation, ductility and ultimate energy dissipation. Increasing the yield strength, thickness of web and flange of steel beams has significant effect on improving bending capacity. Reducing the SSK spacing or increasing the yield strength of SSK, height and thickness slightly improve the cracking, yield and ultimate loads, reduce deflections, enhance the flexural stiffness, slightly weakens the ductility and ultimate energy dissipation. Besides, four types of failure modes were defined, based on reasonable assumptions, formulae for bearing capacity were proposed, and the predicted results fit well with experimental results. The results can be taken as reference for the design and application of steel-UHPC composite beams in long-span and heavy-load structures. / The authors would like to acknowledge the financial support to the work by the Natural Science Foundation of Jiangsu Province, China (BK20201436), High-End Foreign Experts Project of Ministry of Science and Technology, China (G2022014054L), Science and Technology Project of Jiangsu Construction System (2021ZD06, 2018ZD047), Science and Technology Cooperation Fund Project of Yangzhou City and Yangzhou University (YZU212105, YZ2022194), Science and Technology Project of Yangzhou Construction System (202309, 202312, 202204). / The full text of this article will be released for public view at the end of the publisher embargo on 11th Aug 2024.
32

Buckling Analysis of Composite Stiffened Panels and Shells in Aerospace Structure

Beji, Faycel Ben Hedi 08 January 2018 (has links)
Stiffeners attached to composite panels and shells may significantly increase the overall buckling load of the resultant stiffened structure. Initially, an extensive literature review was conducted over the past ten years of published work wherein research was conducted on grid stiffened composite structures and stiffened panels, due to their applications in weight sensitive structures. Failure modes identified in the literature had been addressed and divided into a few categories including: buckling of the skin between stiffeners, stiffener crippling and overall buckling. Different methods have been used to predict those failures. These different methods can be divided into two main categories, the smeared stiffener method and the discrete stiffener method. Both of these methods were used and compared in this thesis. First, a buckling analysis was conducted for the case of a grid stiffened composite pressure vessel. Second, a buckling analysis was conducted under the compressive load on the composite stiffened panels for the case of one, two and three longitudinal stiffeners and then, using different parameters, stiffened panels under combined compressive and shear load for the case of one longitudinal centric stiffener and one longitudinal eccentric stiffener, two stiffeners and three stiffeners. / Master of Science
33

Characterization and Modeling of High-Switching-Speed Behavior of SiC Active Devices

Chen, Zheng 28 January 2010 (has links)
To support the study of potential utilization of the emerging silicon carbide (SiC) devices, two SiC active switches, namely 1.2 kV, 5 A SiC JFET manufactured by SiCED, and 1.2 kV, 20 A SiC MOSFET by CREE, have been investigated systematically in this thesis. The static and switching characteristics of the two switches have firstly been characterized to get the basic device information. Specific issues in the respective characterization process have been explored and discussed. Many of the characterization procedures presented are generic, so that they can be applied to the study of any future SiC unipolar active switches. Based on the characterization data, different modeling procedures have also been introduced for the two SiC devices. Considerations and measures about model improvement have been investigated and discussed, such as predicting the MOSFET transfer characteristics under high drain-source bias from switching waveforms. Both models have been verified by comparing simulation waveforms with the experimental results. imitations of each model have been explained as well. In order to capture the parasitic ringing in the very fast switching transients, a modeling methodology has also been proposed considering the circuit parasitics, with which a device-package combined simulation can be conducted to reproduce the detailed switching waveforms during the commutation process. This simulation, however, is inadequate to provide deep insights into the physics behind the ringing. Therefore a parametric study has also been conducted about the influence of parasitic impedances on the device's high-speed switching behavior. The main contributors to the parasitic oscillations have been identified to be the switching loop inductance and the device output junction capacitances. The effects of different parasitic components on the device stresses, switching energies, as well as electromagnetic interference (EMI) have all been thoroughly analyzed, whose results exhibit that the parasitic ringing fundamentally does not increase the switching loss but worsens the device stresses and EMI radiation. Based on the parametric study results, this thesis finally compares the difference of SiC JFET and MOSFET in their respective switching behavior, comes up with the concept of device switching speed limit under circuit parasitics, and establishes a general design guideline for high-speed switching circuits on device selection and layout optimization. / Master of Science
34

Parametric Study for Assessment of Bridges to Meet Specialized Hauling Vehicles Requirements in Ohio

Gyawali, Himal January 2018 (has links)
No description available.
35

Parametric Study And Design Of Vivaldi Antennas And Arrays

Erdogan, Yakup 01 March 2009 (has links) (PDF)
In this thesis, parametric study and design of Vivaldi antennas and arrays are studied. The parameters of single element antennas and arrays are investigated regarding their effects on the design. The return loss responses and radiation patterns are considered in the parametric study. The results of simulations realized using Ansoft HFSS, a high frequency electromagnetic field simulation program, are shown and discussed. Two different Vivaldi antennas operating in 8.5-10.5 GHz frequency band with return loss responses better than 15 dB are designed based on the results of parametric study. Stripline to slotline transition is used in the feeding section of both antennas. In the same manner, two different 8-element uniform linear arrays operating in 8.5-10.5 GHz with half power beam widths smaller than 12&amp / #730 / and side lobe levels smaller than 13 dB are designed. Binomial and Dolph-Chebyshev feeding techniques are also investigated in order to improve half power beamwidths and side lobe levels of the designed arrays. The designed single element Vivaldi antennas and a linear array of Vivaldi antennas are fabricated. The return loss response and radiation patterns of the fabricated antennas and the array are measured and compared with the simulation results.
36

Fragility Of A Shear Wall Building With Torsional Irregularity

Akansel, Vesile Hatun 01 August 2011 (has links) (PDF)
Buildings with torsional irregularity represent the main focus of many current investigations. However, despite this volume of research, there is no established framework that describes adequately the seismic vulnerability of reinforced concrete shear wall systems. In this study, the three-dimensional behavior of a particular shear-wall structure under earthquake effects was examined with regard to the nonlinear behavior of the reinforced concrete assembly and the parameters that characterize the structure exposed to seismic motion for damage assessment. A three story reinforced concrete shear-wall building was analyzed using the finite element method based ANSYS software. The scaled model building was subjected to shaking table tests at Saclay, France. The project was led by the Atomic Energy Agency (CEA Saclay, France) under the &ldquo / SMART 2008 Project.&rdquo / The investigation was conducted in two phases. In the first phase, the results of the finite element method and experiments were examined, and were reported in this study. For time history analysis, micro-modeling was preferred due to allowing inclusion the nonlinear effects of concrete and steel for analysis. The guiding parameters (acceleration, displacement, strain) of analytical results are compared with the corresponding values that were measured in the experiments to be able to quantify the validity of models and simulation. For the comparison of v the numerical model results with the experimental results FDE (Frequency Domain Error) method was used. After comparison of the numerical model results with the experimental results, the second phase of the SMART 2008 Project was undertaken. The second phase consisted of two parts summarized as &ldquo / Sensitivity Study&rdquo / and &ldquo / Vulnerability Analyses&rdquo / . However, in this report only the sensitivity study and fragility analyses will be reported. Sensitivity study was done to understand which parameters affect the response of the structure. Twelve parametric cases were investigated under two different ground motions. Different behavior parameters were investigated. The effective damping coefficient was found to affect the structural response at 0.2 g design level as well as at 0.6 g over-design level. At the design level, it was observed that elasticity modulus of concrete and additional masses on the specimen determined as effective on the calculated results. To derive the failure probabilities of this structure under various earthquake forces for the given limit states, fragility curves were obtained. Different seismic indicators such as PGA (Peak ground acceleration), PGV (Peak ground velocity), PGD (Peak ground displacement) and CAV (Cumulative absolute velocity) were used as seismic indicators and MISD (Maximum interstory drift) were used as damage indicator for fragility curves. In all 30 time history analyses were done. Regression analyses using least squares method were performed to determine the median capacity and its deviation. Correlation coefficients of the time history data versus fitted curves obtained from the regression analyses changes between 0.65 and 0.99. The lower cases were for PGD- MISD graphs. The scatter of the fragility curves calculated for each damage limit was slightly wider. HAZUS MH MR1 (2003) damage states were also used for the calculation of the fragility curves and compared with the SMART 2008 damage states.
37

Développement d’une méthodologie pour la compréhension du comportement et le dimensionnement d’un bouclier sandwich soumis à l’impact d’un oiseau / Development of a methodology to understand the behaviour and to design a sandwich shield subjected to bird impact

Wilhelm, Arnaud 31 March 2017 (has links)
Durant le vol d'un aéronef, la collision avec un oiseau est un risque important que les autorités de certification imposent de prendre en compte. Dans le cas du choc sur pointe avant, la protection du fond pressurisé est assurée par un bouclier. La compréhension du comportement d'une telle structure sandwich sous impact est essentielle pour permettre l'amélioration des boucliers existants. Ces travaux ont pour buts de comprendre l'influence des différents paramètres de conception du bouclier sur son comportement et sur la protection de la cible, et de mettre en place une méthodologie pour réaliser une telle étude. Pour cela, un modèle éléments finis générique est créé pour être utilisé dans l'étude paramétrique. Une méthode de mesure de la déformée est proposée pour permettre la comparaison rapide d'un grand nombre de cas et la compréhension du comportement de chaque bouclier. Elle s'appuie sur la décomposition de la déformée en trois modes : Indentation, Flexion et Écrasement. Une étude de criblage est ensuite réalisée pour classer les paramètres de définition par ordre d'influence. L'étude paramétrique est réalisée sur les six paramètres les plus influents. Un plan d'expérience de type carré Latin est choisi et sept grandeurs différentes sont suivies. Le cadre des processus gaussiens est utilisé pour créer des modèles réduits, qui sont utilisés pour étudier l'évolution du comportement du bouclier sur l'ensemble du domaine à l'aide d'analyses de sensibilité. Les effets de chaque paramètre sont identifiés et expliqués. Enfin, une méthode pour l'utilisation de ces modèles réduits dans le cadre d'optimisations est proposée. / During an aircraft flight, the possible collision with a bird is a major threat, and the certification authorities require to take ît into account. In the case of a nose strike, the pressurized bulkhead is protected by a shield. Understanding the behaviour under impact of such a sandwich structure is essential. This work has two main goals: understanding the design parameters influence on the shield behaviour, and propose a methodology to conduct this study. Firstly, a generic finite element model is created to be used in a parametric study. A tool to measure the shield deformation is proposed to make it possible to easily compare the behaviour of different shields and to help understanding the behaviour of a shield. This tool is based on the projection ofthe shield deformation on a basis comprising three modes: Indentation, Bendîng and Crushing. A screening study is then conducted to rank the design parameters with respect to their influence. A parametric study is then conducted on the six first parameters. A Latin hyper-square is used for the design of experiment and seven different quantifies are studied. The Gaussian processes framework is used to create surrogates models. Global sensitivity analyses are then conducted to study the variation of the shield behaviour in the whole design space. The effects of each parameterare measured and explained. Finally, a method to minimize the shield mass, using the surrogate models to enforce minimal target protection criteria, is presented.
38

Aspectos relacionados com o impacto semi-frontal em ônibus rodoviário

Goedel, Fábio January 2013 (has links)
O comportamento estrutural de veículos de transporte coletivo, quando submetido a eventos de impacto, é de grande relevância na engenharia automobilística, pois principalmente o ônibus, vem se tornando um dos meios de transporte de elevada importância, sendo que seu uso vem aumentando a cada ano. No entanto, as estruturas de ônibus que circulam nas estradas brasileiras não são capazes de resistir, sem causar danos aos passageiros, a eventos de impacto em acidentes, o que pode ser verificado em pesquisas divulgadas pela Agência Nacional de Transportes Terrestres (ANTT) em 2007, que mostra a evolução de acidentes e vítimas envolvendo ônibus, que cada ano aumentam consideravelmente. Neste contexto, pretende-se desenvolver um absorvedor de impacto que aumente a capacidade de absorção da energia de impacto e evite a invasão da região de sobrevivência dos passageiros, e desta forma diminuindo o número de vítimas em acidentes. Serão abordados neste trabalho eventos de impacto semi-frontal, justificado pela gravidade dos acidentes desse tipo nas estradas, sendo este o tipo de acidente que deixa um maior número de vítimas, pois geralmente parte da estrutura lateral do ônibus é removida, expondo os passageiros no período de impacto. Esse efeito é conhecido como “Efeito Abridor de Latas”. O modelo numérico deste trabalho será formado por elementos unifilares, sendo a estrutura do ônibus formada por vigas flexíveis e/ ou rígidas, unidas através de juntas não lineares rotacionais e translacionais. A rigidez de cada junta não linear é obtida a partir de métodos analíticos que descrevem o comportamento do tubo de parede fina quando submetido a impacto. / The structural behavior of transportation vehicles when subjected to events of impact is of great relevance in automotive engineering, mainly because the bus has become a highly important alternative means of transportation, and its use is increasing every year. However, the structures of the buses circulating on Brazilian roads are not able to withstand strong impact, without causing passengers’ injury in events where accidents occur, which can be shown in surveys released by the National Transport Agency (ANTT) in 2007, presenting that the great incidence of accidents with victims involving buses is increasing considerably every year. In this context, the development of an impact absorber that had the capability to increase the impact energy absorption and prevent the invasion of part of bus on the region where passengers are located (reducing the number of fatalities in accidents) are the objectives of this work. In this work, a semi-frontal impact will be presented and studied due to the severity of such accident, as the side of the bus structure is removed, exposing the passengers during the impact. This is the effect known as “Can opener effect”. The numerical model of this study will consist of a single-wire element, with a bus structure formed by flexible and/or rigid beams joined by nonlinear rotational and translational joints. The rigidity of each nonlinear joint is obtained by analytical methods describing the behavior of a thin-walled tube subjected to an impact force.
39

Análise paramétrica por elementos finitos de vigas de concreto armado e protendido pré-tracionadas com abertura na alma / Parametric analysis using the finite element method of reinforced concrete beams and presstressed concrete beams with openings

Kunzler, Paulo Schmeling January 2013 (has links)
As exigências do mercado da construção civil fazem com que não haja espaço para a passagem de tubulações sob as vigas que sustentam as lajes de concreto. Então, uma solução cada vez mais frequente é a realização de furos na alma das vigas para a passagem de dutos. A presença destes furos altera o comportamento das vigas gerando concentração de tensões, fissuras e possibilidade de esmagamento do concreto. O dimensionamento de vigas de concreto armado com furos tem sido baseado em métodos empíricos ou no método das bielas e tirantes. Contudo, nas vigas de concreto protendido, surgem novos fatores como forças de compressão de grande intensidade e a possibilidade de reversão de esforços no processo de fabricação, transporte e carregamento. Então, o objetivo desta dissertação é realizar uma análise não-linear de vigas de concreto protendido pré-tensionado com furos através do método dos elementos finitos, para avaliar o seu comportamento estrutural. Nas análises foi utilizado o programa de elementos finitos ANSYS, que permite a modelagem do comportamento não-linear de materiais como aço e concreto, bem como a introdução da protensão como uma deformação inicial da armadura. O modelo numérico foi validado através da comparação de seus resultados com dados de ensaios experimentais de estruturas de concreto armado, protendido e armado com furo. Uma vez confirmada a eficácia do modelo, o mesmo foi utilizado no estudo de vigas de concreto armado e protendido com furos. Foi feito um estudo paramétrico das dimensões e posição do furo em vigas de concreto armado e protendido, avaliando as tensões e deformações específicas no concreto e nas armaduras. Com a análise concluída foi possível perceber notável influencia da posição do furo na altura da seção da viga quando avaliada a distribuição dos esforços cortantes acima e abaixo da abertura. Outro fator conclusivo foi de que as vigas de concreto protendido que sofrem fissuração no bordo superior no ato da protensão apresentaram menor capacidade de resistir a esforço cortante na região acima do furo. / Nowadays, as a consequence of the demands of the construction market, there is no space for the passage of pipes under the beams that support the concrete slabs. Then, an increasingly common solution is the introduction of holes in the beam web for the passage of pipes and ducts. These openings change the behavior of internal stresses and create a possibility of concrete cracking or crushing. The designs of reinforced concrete beams have been based on empiric methods for over four decades. However, on prestressed concrete beams new factors appear and must be considered such as higher compression stresses, the possibility of inversion of the bending moment diagram due to the initial prestress of the beam, transportation and higher loadings. The objective of this work is to perform a non-linear analysis of prestressed beams with openings in the web using the finite element method to evaluate its structural behavior. On the analysis it was used the finite element method software ANSYS, that allows the modeling of the non-linear behavior of materials as concrete and steel, as well the use of prestress of the tendons by adding an initial strain to the element. The numeric model was validated comparing its results with experimental tests of reinforced concrete beams, prestressed concrete beams and a reinforced concrete beams with openings. Once the model was validated, it was used on a study of reinforced and prestressed concrete beams with openings. A parametric study was carried out varying the position and dimensions of the openings and the beam cross section. In each case the stresses in the concrete and in the reinforcement were evaluated. After the end of the analysis, it was possible to perceive a noticeable change of distribution of shear forces above and under the opening. The stress distribution in the reinforcement determined by the numerical analyses was found very different from that prescribed in the usual empirical methods of design.
40

Aspectos relacionados com o impacto semi-frontal em ônibus rodoviário

Goedel, Fábio January 2013 (has links)
O comportamento estrutural de veículos de transporte coletivo, quando submetido a eventos de impacto, é de grande relevância na engenharia automobilística, pois principalmente o ônibus, vem se tornando um dos meios de transporte de elevada importância, sendo que seu uso vem aumentando a cada ano. No entanto, as estruturas de ônibus que circulam nas estradas brasileiras não são capazes de resistir, sem causar danos aos passageiros, a eventos de impacto em acidentes, o que pode ser verificado em pesquisas divulgadas pela Agência Nacional de Transportes Terrestres (ANTT) em 2007, que mostra a evolução de acidentes e vítimas envolvendo ônibus, que cada ano aumentam consideravelmente. Neste contexto, pretende-se desenvolver um absorvedor de impacto que aumente a capacidade de absorção da energia de impacto e evite a invasão da região de sobrevivência dos passageiros, e desta forma diminuindo o número de vítimas em acidentes. Serão abordados neste trabalho eventos de impacto semi-frontal, justificado pela gravidade dos acidentes desse tipo nas estradas, sendo este o tipo de acidente que deixa um maior número de vítimas, pois geralmente parte da estrutura lateral do ônibus é removida, expondo os passageiros no período de impacto. Esse efeito é conhecido como “Efeito Abridor de Latas”. O modelo numérico deste trabalho será formado por elementos unifilares, sendo a estrutura do ônibus formada por vigas flexíveis e/ ou rígidas, unidas através de juntas não lineares rotacionais e translacionais. A rigidez de cada junta não linear é obtida a partir de métodos analíticos que descrevem o comportamento do tubo de parede fina quando submetido a impacto. / The structural behavior of transportation vehicles when subjected to events of impact is of great relevance in automotive engineering, mainly because the bus has become a highly important alternative means of transportation, and its use is increasing every year. However, the structures of the buses circulating on Brazilian roads are not able to withstand strong impact, without causing passengers’ injury in events where accidents occur, which can be shown in surveys released by the National Transport Agency (ANTT) in 2007, presenting that the great incidence of accidents with victims involving buses is increasing considerably every year. In this context, the development of an impact absorber that had the capability to increase the impact energy absorption and prevent the invasion of part of bus on the region where passengers are located (reducing the number of fatalities in accidents) are the objectives of this work. In this work, a semi-frontal impact will be presented and studied due to the severity of such accident, as the side of the bus structure is removed, exposing the passengers during the impact. This is the effect known as “Can opener effect”. The numerical model of this study will consist of a single-wire element, with a bus structure formed by flexible and/or rigid beams joined by nonlinear rotational and translational joints. The rigidity of each nonlinear joint is obtained by analytical methods describing the behavior of a thin-walled tube subjected to an impact force.

Page generated in 0.1073 seconds