1 |
Conception de lignes de fabrication sous incertitudes : analyse de sensibilité et approche robuste. / Production line design under uncertainty : sensitivity analysis and robust approachGurevsky, Evgeny 13 December 2011 (has links)
Les travaux présentés dans cette thèse portent sur la conception de systèmes de fabrication en contexte incertain. La conception d’un tel système peut être vue comme un problème d’optimisation qui consiste à trouver une configuration qui permet d’optimiser certains objectifs tout en respectant des contraintes technologiques et économiques connues. Les systèmes de fabrication étudiés dans ce mémoire sont des lignes d’assemblage et d’usinage. La première est une ligne qui se présente comme une chaîne de postes de travail où, dans chaque poste, les opérations d’assemblage s’exécutent de manière séquentielle. La deuxième, quant à elle, est une ligne particulière qui se compose de machines de transfert comportant plusieurs boîtiers multibroches où les opérations s’exécutent simultanément. Dans un premier temps, nous décrivons de différentes approches permettant de modéliser l’incertitude des données en optimisation. Une attention particulière est portée sur les deux approches suivantes : l’approche robuste et l’analyse de sensibilité. Puis, nous présentons trois applications : la conception d’une ligne d’assemblage et d’une ligne d’usinage soumises aux variations de temps opératoires et la conception d’une ligne d’assemblage avec les temps opératoires connus sous la forme d’intervalles des valeurs possibles. Pour chaque application, nous identifions les performances attendues ainsi que la complexité de la prise en compte de l’incertitude. Ensuite, nous proposons de nouveaux critères d’optimisation en adéquation avec la problématique introduite. Enfin des méthodes de résolution sont développées pour appréhender les différents problèmes mis en évidence par ces critères. / The presented work deals with the design of production systems in uncertain context. The design of such systems can be interpreted as an optimization problem that consists to find a configuration optimizing certain objectives and respecting technological and economical constraints. The production systems studied in this thesis are the assembly and transfer lines. The first one is the line that can be represented as a flow-oriented chain of workstations where, at each workstation, the tasks are executed in a sequential manner. The second is a particular line that is composed of transfer machines including several multi-spindle heads where the tasks are executed simultaneously. At first, we describe different approaches that permit to model the uncertainty of data in optimization. A particular attention is attracted to two following approaches: robust approach and sensitivity analysis. Then, we present three applications: the design of assembly and transfer lines under variations of task processing times and the design of an assembly line with interval task processing times. For each application, we identify the expected performances as well as the complexity of taking into account the uncertainty. Thereafter, we propose some new optimization criteria in adequacy with the introduced problematic. Finally, resolution methods are developed to solve different problems engendered by these criteria.
|
2 |
Eléments de théorie du risque en finance et assurance / Elements of risk theory in finance and insuranceMostoufi, Mina 17 December 2015 (has links)
Cette thèse traite de la théorie du risque en finance et en assurance. La mise en pratique du concept de comonotonie, la dépendance du risque au sens fort, est décrite pour identifier l’optimum de Pareto et les allocations individuellement rationnelles Pareto optimales, la tarification des options et la quantification des risques. De plus, il est démontré que l’aversion au risque monotone à gauche, un raffinement pertinent de l’aversion forte au risque, caractérise tout décideur à la Yaari, pour qui, l’assurance avec franchise est optimale. Le concept de comonotonie est introduit et discuté dans le chapitre 1. Dans le cas de risques multiples, on adopte l’idée qu’une forme naturelle pour les compagnies d’assurance de partager les risques est la Pareto optimalité risque par risque. De plus, l’optimum de Pareto et les allocations individuelles Pareto optimales sont caractérisées. Le chapitre 2 étudie l’application du concept de comonotonie dans la tarification des options et la quantification des risques. Une nouvelle variable de contrôle de la méthode de Monte Carlo est introduite et appliquée aux “basket options”, aux options asiatiques et à la TVaR. Finalement dans le chapitre 3, l’aversion au risque au sens fort est raffinée par l’introduction de l’aversion au risque monotone à gauche qui caractérise l’optimalité de l’assurance avec franchise dans le modèle de Yaari. De plus, il est montré que le calcul de la franchise s’effectue aisément. / This thesis deals with the risk theory in Finance and Insurance. Application of the Comonotonicity concept, the strongest risk dependence, is described for identifying the Pareto optima and Individually Rational Pareto optima allocations, option pricing and quantification of risk. Furthermore it is shown that the left monotone risk aversion, a meaningful refinement of strong risk aversion, characterizes Yaari’s decision makers for whom deductible insurance is optimal. The concept of Comonotonicity is introduced and discussed in Chapter 1. In case of multiple risks, the idea that a natural way for insurance companies to optimally share risks is risk by risk Pareto-optimality is adopted. Moreover, the Pareto optimal and individually Pareto optimal allocations are characterized. The Chapter 2 investigates the application of the Comonotonicity concept in option pricing and quantification of risk. A novel control variate Monte Carlo method is introduced and its application is explained for basket options, Asian options and TVaR. Finally in Chapter 3 the strong risk aversion is refined by introducing the left-monotone risk aversion which characterizes the optimality of deductible insurance within the Yaari’s model. More importantly, it is shown that the computation of the deductible is tractable.
|
Page generated in 0.0416 seconds