Spelling suggestions: "subject:"participações (matemática)"" "subject:"partição (matemática)""
11 |
Variações do diagrama de Ferrers, partições planas e funções geradorasCunha Filho, Jair 07 July 2006 (has links)
Orientador: Jose Plinio O. Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T21:44:47Z (GMT). No. of bitstreams: 1
CunhaFilho_Jair_D.pdf: 2442598 bytes, checksum: 0971fb5486221b670201a5115f273171 (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho, tratamos de algumas variações dos Diagramas de Ferrers, onde apresentamos, em especial, uma que consiste de um diagrama hexagonal infinito, com cada hexágono dotado das diagonais que passam pelo seu centro. O resultado envolve uma subseqüência da seqüência de Fibonacci fazendo contagem em termos de partições. Apresentamos, também, interpretaçoes das partições planas com duas e três linhas em termos de partições ordinárias com partes tomadas em multiconjuntos, exibindo, em cada caso, as respectivas bijeções. No caso das partições planas com duas linhas, exibimos uma bijeção entre a interpretq,ção obtida e uma interpretação já conhecida. Finalmente, apresentamos bijeções entre algumas interpretações combinatórias, envolvendo números de Fibonacci e Pell. Encerramos, exibindo uma classe de partições, onde, para valores particulares de um parâmetro, obtemos como corolários resultados conhecidos / Abstract: Tn this thesis we study some variations of the Ferrers Diagram where we present, in particular, one that involves a infinite hexagonal diagram including the diagonals going through the center. The result involves a subsequence of. the Fibonacci numbers where one uses partitions. We present, also, interpretations of plane partitions with two and three !ines, in terms of the ordinary partitions, with parts taken frorp multisets giving, in each case, the corresponding bijections. Tn the case of the plane partitions with two !ines a bijection between our interpretation and one already known is given. We have combinatorial results related to Fibonacci and Pell numbers. At the end we present a class of partitions where, for particular values of the parameter, we get results already known / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
12 |
Provas bijetivas atraves de nova representação matricial para partições / Bijectives proofs through new matricial representation for partitionsSilva, Robson da 14 August 2018 (has links)
Orientador: Jose Plinio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T00:20:04Z (GMT). No. of bitstreams: 1
Silva_Robsonda_D.pdf: 897208 bytes, checksum: 5d17d33a20271484f3f7853e008443db (MD5)
Previous issue date: 2009 / Resumo: No presente trabalho, apresentamos provas bijetivas para algumas identidades. A principal ferramenta utilizada _e a representação para partições como matrizes de duas linhas introduzida em [9] e [10]. Também apresentamos algumas conseqüências desta representação e a extendemos a outros casos. Uma prova bijetiva para uma identidade envolvendo os Números Triangulares e apresentada ao final. / Abstract: In this work, we show bijective proofs for some identities. The main tool is the two-line matrix representation for partitions introduced in [9] and [10]. We also present some consequences of this representation and we also extend it to other cases. A bijective proof for an identity involving the Triangular Numbers is given at the end. / Doutorado / Matematica Discreta / Doutor em Matemática Aplicada
|
13 |
Funções simetricas e combinatoria / Symmetric functions and combinatoricsSilva, Robson da 14 February 2007 (has links)
Orientador: Jose Plinio de Oliveira Santos, Marcio Antonio de Faria Rosa / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T09:04:51Z (GMT). No. of bitstreams: 1
Silva_Robsonda_M.pdf: 1769033 bytes, checksum: 1d7dfaf76d2a38bd63024d4910459fc3 (MD5)
Previous issue date: 2007 / Resumo: Este trabalho está dividido em duas partes. Na primeira, apresentamos as funções simétricas: o espaço vetorial das funções simétricas sobre os números racionais, algumas bases, um produto escalar e as chamadas funções (simétricas) de Schur. Na segunda parte, exibimos algumas das muitas aplicações desta teoria: no estudo dos caracteres das representações do grupo simétrico; nas partições planas; na enumeração de permutações; na enumeração sob a ação de grupos / Abstract: This work is divided in two parts. In the first one, we present the symmetric functions: the symmetric functions vector space over the field of the rational numbers, some bases, an inner product and the so called Schur (symmetric) functions. In the second part, we present some of the many aplications of this theory: in the study of the characters of the symmetric group's representations; in the plane partitions; in permutation enumeration; in the enumeration under group action / Mestrado / Matematica / Mestre em Matemática
|
14 |
Alguns resultados em partições planas / Some results in plane partitionsSpreafico, Elen Viviani Pereira, 1986- 15 August 2018 (has links)
Orientador: José Plínio de Oliveira Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-15T23:12:14Z (GMT). No. of bitstreams: 1
Silva_ElenVivianiPereirada_M.pdf: 748342 bytes, checksum: 9859c0b9ff8882f29bdb000d73f74a92 (MD5)
Previous issue date: 2010 / Resumo: Neste trabalho vamos abordar dois resultados em partições planas. O primeiro, chamado Teorema Fundamental de MacMahon, nos dá uma fórmula da função geradora de partições planas de um número natural n; cuja versão da demonstração que será apresentada neste trabalho foi a prova dada por L. Carlitz em 1967. O segundo, chamado Conjectura de MacMahon, nos dá uma fórmula para a função geradora de partições planas simétricas de um número natural n, com até s níveis e com cada parte menor do que ou igual a j, este, provado por George Andrews em 1979 com um elegante argumento combinatório. Para a demonstração desses resultados usaremos identidades combinatórias e alguns resultados sobre determinantes / Abstract: In this paper we approach two results on plane partitions. The first, the MacMahon's Fundamental Theorem, gives us a formula for the generating function of plane partitions of a natural number n, whose version of the demonstration will be presented here was the proof given by L. Carlitz in 1967. The second, MacMahon's Conjecture, gives us a formula for the generating function for symmetric plane partitions of a natural number n with at most s rows and with each part at most j, this, as proven by George Andrews in 1979 with an elegant combinatorial argument. For the demonstration of these results we will use combinatorial identities and some results on determinants / Mestrado / Matematica Aplicada / Mestre em Matemática Aplicada
|
15 |
Interpretações combinatórias para identidades envolvendo sobrepartições e partições planas / Combinatorial interpretation for identities envolving overpartitions and plane partitionsAlegri, Mateus 16 August 2018 (has links)
Orientador: José Plínio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisitca e Computação Cientifica / Made available in DSpace on 2018-08-16T01:34:00Z (GMT). No. of bitstreams: 1
Alegri_Mateus_D.pdf: 32503931 bytes, checksum: fb4329080c2c9c80896a52e4442b1b86 (MD5)
Previous issue date: 2010 / Resumo: Neste trabalho apresentaremos novas provas bijetivas para identidades relacionadas a partições em partes pares e distintas, generalizações das identidades de Rogers-Ramanujan entre outras. Porém o objetivo principal será trabalhar com sobrepartições de inteiros, dando a estes uma nova interpretação em termos de matrizes de três linhas. Exibiremos provas bijetivas para algumas classes de sobrepartições, apresentaremos um novo resultado que basicamente é identificar uma sobrepartição com partições planas; sendo este o principal resultado deste trabalho. No final apresentaremos algumas aplicações da representação de partição via matrizes de duas linhas: fórmulas fechadas para algumas classes destas partições. / Abstract: In this work, we present new bijective proofs for identities related to partitions into distinct even parts, generalizations of Rogers-Ramanujan identities, among others. The basic aim is to work with overpartitions of integers, give a new interpretation in terms of three-line matrices. We will show bijective proofs for some classes of overpartitions. We will present a new result that is how to identify an overpartition (with some particularities) with plane partitions; which is one of the most important results. At the end we will present some applications of the representation of a partition as a two-line array: closed formulaes for some classes of these partitions. / Doutorado / Análise Combinatória / Doutor em Matemática Aplicada
|
16 |
Sobre novos resultados na teoria das partições / On new results in the theory of partitionsAndrade, Cecília Pereira de, 1983- 12 November 2013 (has links)
Orientador: José Plínio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-24T00:20:05Z (GMT). No. of bitstreams: 1
Andrade_CeciliaPereirade_D.pdf: 1476737 bytes, checksum: ad3ad78834fa61c06f515c2172ae896c (MD5)
Previous issue date: 2013 / Resumo: Este trabalho foi baseado em uma nova maneira de representar, combinatoriamente, os coeficientes de várias importantes séries por meio de matrizes de duas linhas. Os resultados que apresentamos neste trabalho foram obtidos por meio do uso desta nova representação. Descrevemos interpretações para partições irrestritas e a correspondente bijeção entre os dois respectivos conjuntos. Também obtemos resultados para algumas Mock Theta Functions e relacionamos algumas Mock Theta Functions distintas. / Abstract: This work was based on a new way to represent combinatorially the coefficients of several important series by two-line array. The results presented in this work were obtained by the use of this new representation. We describe interpretations of unrestricted partitions and the corresponding bijection between the two respective sets. We also obtain some results for Mock Theta Functions and relate some distinct Mock Theta Functions. / Doutorado / Matematica Aplicada / Doutora em Matemática Aplicada
|
17 |
Tópicos em combinatória / Topics in combinatoricsDomingues, Deborah Pereira 16 August 2018 (has links)
Orientador: José Plínio de Oliveira Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T18:39:44Z (GMT). No. of bitstreams: 1
Domingues_DeborahPereira_M.pdf: 925996 bytes, checksum: 6a430acfaa4475e03a36ee7e09bbf42a (MD5)
Previous issue date: 2010 / Resumo: Neste trabalho estudamos dois importantes tópicos em combinatória. O primeiro deles é o Teorema Enumerativo de Pólya. No capítulo 2 é dada uma demonstração deste teorema usando o Teorema de Burnside. Também neste capítulo, encontram-se algumas de suas diversas aplicações. O segundo tópico trata de Teoria de Partições. Esta dissertação aborda alguns objetos de estudo desta área. O primeiro objeto é o método de Partition Analisys, usado para achar funções geradoras de vários tipos de interessantes funções de partição. Ainda relacionado a funções geradoras, o capítulo 3 aborda um pouco sobre q-séries. O segundo objeto é o método gráfico, que utiliza a representação gráfica de Ferrers para uma partição. Ainda neste capítulo, são usados os conceitos de quadrado de Durfee e símbolo de Frobenius para provar algumas identidades. / Abstract: This paper presents two important topics in combinatorics. The first one is the Pólya Enumeration Theorem. In chapter 2 is given a demonstration of this theorem by Burnside's Theorem. Also in this chapter are some of their various applications. The second topic deals with the Theory of Partition. This dissertation addresses some aspects of the study on this area. The first is Partition Analysis, this method is used to find the generating functions of various kinds of interesting partition functions. In the third chapter we deal with q-series which is also related to generating functions. The second is the graphical method, which uses a Ferrers's graphical representation of a partition. In addition, we use the concepts of Durfee square and Frobenius's symbol to prove some identities. / Mestrado / Mestre em Matemática
|
18 |
O método simbólico aplicado a problemas de combinatória / The symbolic method applied to combinatorial problemsRodrigues, Christiane Buffo, 1983- 04 May 2013 (has links)
Orientador: José Plínio de Oliveira Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-22T15:43:28Z (GMT). No. of bitstreams: 1
Rodrigues_ChristianeBuffo_M.pdf: 948322 bytes, checksum: be5636b0d15a131df52736cd4f4782d0 (MD5)
Previous issue date: 2013 / Resumo: Este trabalho trata da aplicação do Método Simbólico na resolução de problemas de Combinatória. A vantagem desta técnica é o cálculo direto de uma expressão fechada para a Função Geradora F(z) do problema escrito como uma Série de Potências. Consequentemente garantimos a facilidade na enumeração da sequência que queremos a partir do coeficiente de zn de F(z). O desenvolvimento de nosso estudo foi feito aplicando-se o método a dois tipos de Classes: Rotuladas e não Rotuladas, apontando as diferenças básicas entre elas através de exemplos e resultados teóricos. Ao final, concluímos que a enumeração independe do tipo de modelagem feita para o problema / Abstract: This work deals with the application of the Symbolic Method in the solutions of combinatorial problems. The advantage of this technique is the direct calculus for the exact expression of the Generating Function F(z) of the problem, written as a Power Series. Consequently, we ensure the enumeration of the desired sequence, from the coefficient of zn of F(z). Our study was developed by applying the method in two types of Classes: Labeled and unlabelled, pointing the basic differences between them through examples and theoretical results. Finally, we concluded that the enumeration does not depend of the type of the model chosen for the problem / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
|
19 |
Aspectos combinatorios de identidades do tipo Rogers-Ramanujan / Aspects combinatorics of identities Rogers-Ramanujan typeRibeiro, Andreia Cristina 24 November 2006 (has links)
Orientador: Jose Plinio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-07T19:25:43Z (GMT). No. of bitstreams: 1
Ribeiro_AndreiaCristina_D.pdf: 576297 bytes, checksum: 445154b7e26e801e909854c976d31c45 (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho são estudadas varias das identidades do tipo Rogers-Ramanujan dadas por Slater. Em 1985, Andrews, introduziram um método geral para se estender para duas variáveis identidades desse tipo de modo a se obter, como casos especiais, certas importantes funções de Ramanujan. Santos, em 1991, forneceu conjecturas para varias das famílias de polinômios que surgem nestas extensões tendo provado algumas delas. Sills, em sua tese de doutorado, em 2002, implementou procedimentos que permitem a demonstra¸c¿ao das conjecturas dadas por Santos. No presente trabalho, de forma diferente daquela dada por Andrews, s¿ao introduzidos parâmetros nas somas que aparecem nestas identidades, de modo a se obter, em cada caso, funções geradoras que fornecem interpretações combinatórias para partições onde ¿números¿s¿ao vistos como ¿vetores¿e que fornecem, para especiais valores dos parâmetros, interpretações novas para muitas das identidades de Slater / Abstract: In this work many of the identities of the Rogers-Ramanujan type given by Slater are considered. In 1985, Andrews, introduced a general method in other to extend to two variables identities of this type in order to get, as special cases, some important functions of Ramanujan. Santos, in 1991, gave conjectures for many of the family of polynomials that appears in those extensions providing the proofs for some of them. Sills, in his Ph.D. thesis in 2002 ,has implemented procedures allowing the proofs of the conjectures given by Santos. In the present work, in a form different from the one given by Andrews, parameters are introduced in the sums of the identities in such a way to get, in each case, generating functions giving combinatorial interpretations for partitions where ¿numbers¿are represented as ¿vectors¿and that can give, as special cases, combinatorial interpretations for many of the identities given by Slater / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
20 |
Demonstrações bijetivas em partições / Bijectives demonstrations in partitionsMucelin, Cláudio 17 August 2018 (has links)
Orientador: Andréia Cristina Ribeiro / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T16:44:00Z (GMT). No. of bitstreams: 1
Mucelin_Claudio_M.pdf: 744549 bytes, checksum: 062211ac0a3abf9bcf171fe9881dcafa (MD5)
Previous issue date: 2011 / Resumo: Este trabalho apresenta alguns resultados sobre partições de números inteiros e a importância deles na história da Matemática e da Teoria dos Números. Encontrar demonstrações bijetivas em partições não é nada fácil. Mas, depois de encontradas, tornam-se uma maneira agradável e fácil de entender e provar algumas Identidades de Partições. Este trabalho pretende ser didático e de fácil entendimento para futuras pesquisas de estudantes que se interessem pelo assunto. Ele traz definições básicas e importantes sobre partições, os Gráficos de Ferrers, demonstrações de resultados interessantes como a Bijeção de Bressoud e o Teorema Pentagonal de Euler. Destaca também a importância das funções geradoras e alguns resultados devidos a Sylvester, Dyson, Fine, Schur e Rogers-Ramanujan / Abstract: This work presents some results about partitions of integers numbers and their importance in the history of Mathematics and in the Theory of the Numbers. To find bijective demonstrations in partitions it is not easy. But, after finding them, to understand and to prove some Identities of Partitions becomes agreeable and easy. This work intends to be didatic and of easy understanding for future researches made by students interested in this subject. It contains basic and important definitions about partitions, the Ferrers' Graphics, demonstrations of interesting results as the Bressond's Bijection and the Euler's Pentagonal Theorem. It also details the importance of the generating functions and some results due to Sylvester, Dyson, Fine, Schur and Rogers-Ramanujan / Mestrado / Teoria dos Numeros / Mestre em Matemática
|
Page generated in 0.1224 seconds