• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linear, linearisable and integrable nonlinear PDEs

Dimakos, Michail January 2013 (has links)
No description available.
2

Nonlinear convective instability of fronts a case study /

Ghazaryan, Anna R., January 2005 (has links)
Thesis (Ph.D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains ix, 176 p.; also includes graphics. Includes bibliographical references (p. 172-176). Available online via OhioLINK's ETD Center
3

Estudo da dispersão de risco de epizootias em animais = o caso da influenza aviária / A risk dispersion study of animal diseases : the avian influenza case

Souza, Juliana Marta Rodrigues de, 1985- 15 August 2018 (has links)
Orientador: João Frederico da Costa Azevedo Meyer / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-15T23:20:24Z (GMT). No. of bitstreams: 1 Souza_JulianaMartaRodriguesde_M.pdf: 3448446 bytes, checksum: c0a56c82b26926f022b1fbbb4b9e4fbe (MD5) Previous issue date: 2010 / Resumo: Esta dissertação de mestrado do grupo de biomatemática do Instituto de Matemática Aplicada e Computacional da UNICAMP, com auxílio de Bolsa de mestrado da CNPq, é resultado de dois anos, 2008 e 2009, de estudo a respeito da dispersão do risco de contágio do H5N1. Após tratar brevemente da estrutura viral; do papel das aves que sofrem sua ação; dos problemas financeiros que o H5N1 traria ao Brasil e já inflingiu em outras nações; o trabalho concentra-se em modelar e simular um ambiente formado de duas populações de comportamento distinto. A primeira, de aves silvestre, livres, que podem migrar. A segunda população consiste de aves restritas ao controle de um criador; não voam, não se espalham além dos limites da pequena localidade onde são criadas para fins de subsistência. Cada uma das três subdivisões destas populações, de acordo com o status em relação à doença, é modelada por uma equação diferencial parcial, compondo um sistema cuja solução numérica, necessária por conta das descontinuidades das condições iniciais, prediz o comportamentos da infecção em função do tempo e do espaço. Dentre os resultados alcançados, destaca-se: o homem parece ter chance de conter o espalhamento do vírus. Para isso teria de sacrificar todos os animais de pequenas criações e, então indivíduos da população silvestre, mas a uma taxa menor do que eles são capazes de se reproduzir, ou seriam levados a extinção. Também estão contidos neste trabalho, o estudo dos estados estacionários do sistema e a estimativa de que o coeficiente de difusão do H5N1 assumiria valores entre 0,025 e 0,5 km²/dia / Abstract: This dissertation from the IMECC, UNICAMP, Biomathematical Group, with funds offered by CNPq, is the result of two years, 2008 and 2009, of study about the spreading of H5N1 risk of infection. After treating briefly the viral structure; the birds that suffer the virus; the financial problems that the disease would bring to Brazil and has already inflicted to other nations; this paper concentrates in modeling and simulating an environment composed by two distinct behaviour population. The first one is free wild birds, that migrate. The second population consists of birds restricted to a farmer control; they don't fly, don't spread beyond little farms limits where they are raised to subsistence purposes. After dividing each of these two populations in order three, acording to their status in relation to the H5N1 infection, they are modeled by means of Partial Differential Equation, composing a non-linear system which requires numerical solution because of descontinuous inicial conditions and predicts the infection behaviour in spatial and temporal terms. Among the results figure: Humans, by completely sacrifing small farms birds and, then, wild birds in smaller rate than they reproduce themselves, seems to have a chance of prevent the virus to spread even further. This paper also study stationary states and determine, through computational methods, the H5N1 coefficient range, among 0.025 and 0.5 km²/day / Mestrado / Biomatematica / Mestre em Matemática Aplicada
4

Uma abordagem via transformada de Fourier para as equações de Navier-Stokes = boa-colocação e comportamento assintótico / An approach via Fourier transform for the Navier-Stokes equetions : well-posedness and asymptotic behavior

Valencia Guevara, Julio Cesar, 1985- 19 August 2018 (has links)
Orientador: Lucas Catão de Freitas Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T19:21:09Z (GMT). No. of bitstreams: 1 ValenciaGuevara_JulioCesar_M.pdf: 664823 bytes, checksum: 0c43bba776e592ed44fad0d1bc2f6998 (MD5) Previous issue date: 2012 / Resumo: Estudamos existência, unicidade, dependência contínua nos dados e comportamento assint ótico de soluções globais das equações de Navier-Stokes (com n >= 3), sob condições de pequenez no dado inicial e na força externa, em um espaço de distribuições (PMa) cuja construção é baseada na transformada de Fourier. Este espaço contém funções fortemente singulares e, em particular, funções homogêneas de um certo grau cuja correspondente solução (com tais dados) é auto-similar. Além disso, mostramos a existência de uma classe de soluções que são assintoticamente auto-similar. Estudamos também a existência de soluções estacionárias pequenas e analisamos a estabilidade assintótica delas. Finalmente, são dadas condições sob as quais a solução é uma função regular para t > 0 (mesmo com dado inicial singular) e satisfaz as equações de Navier-Stokes no sentido clássico para t > 0. Esta dissertação é baseada no artigo de M. Cannone and G. Karch, Journal of Diff. Equations 197 (2) (2004) / Abstract: We study existence, uniqueness, continuous dependence upon the data and asymptotic behavior of solutions for the Navier-Stokes equations (with n _ 3), under smallness conditions on the initial data and external force, in a space of distributions (PMa), whose construction is based on Fourier transform. This space contains strongly singular functions and, in particular, homogeneous functions with a certain degree whose corresponding solution (with such data) is self-similar. Moreover, the existence of a class of asymptotically self-similar solutions is proved. We also study the existence of small stationary solutions and their asymptotic stability. Finally, conditions are given for the obtained solution to be regular for t > 0 (even with singular initial data) and to satisfy the Navier-Stokes equations in the classical sense for t > 0. This master dissertation is based on the paper by M. Cannone and G. Karch, Journal of Diff. Equations 197 (2) (2004) / Mestrado / Matematica / Mestre em Matemática
5

Multiplicidade de soluções para equação de quarta ordem / Multiplicity of solutions for fourth order equation

Monteiro, Evandro, 1982- 10 April 2011 (has links)
Orientador: Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T23:11:17Z (GMT). No. of bitstreams: 1 Monteiro_Evandro_D.pdf: 681089 bytes, checksum: 5ec4729a2d7b386329193adf424f6b42 (MD5) Previous issue date: 2011 / Resumo: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The complete abstract is available with the full electronic digital thesis or dissertations / Doutorado / Matematica / Doutor em Matemática
6

Sobre uma classe de sistemas elípticos hamiltonianos / On a class of hamiltonian elliptic systems

Cardoso, José Anderson Valença, 1980- 19 August 2018 (has links)
Orientador: Francisco Odair Vieira de Paiva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T21:33:51Z (GMT). No. of bitstreams: 1 Cardoso_JoseAndersonValenca_D.pdf: 1655484 bytes, checksum: 6e4f6872240f3317db759e94789f5d34 (MD5) Previous issue date: 2012 / Resumo: Neste trabalho consideramos uma classe de Sistemas Elípticos Hamiltonianos. Esta classe de sistemas surge como modelo natural em áreas como Física e Biologia. Estudamos casos que envolvem crescimento crítico, arbitrário e crítico perturbado e analisamos questões relacionadas a existência, multiplicidade e propriedades de soluções. Os resultados são obtidos com o uso de métodos variacionais, a exemplo dos teoremas de min-max, aliados as propriedades das funções com simetria radial e ao princípio de concentração de compacidade / Abstract: In this work, we consider a class of Hamiltonian Elliptic Systems. This class of systems arise as a natural model in many areas such as Physics and Biology. We studied cases involving critical growth, arbitrary growth and perturbed critical growth and we also investigated questions related to the existence, multiplicity and properties of solutions. The results are obtained by using a variational approach, for instance, min-max theorems, combined with properties of radially symmetric functions and the concentration-compactness principle / Doutorado / Matematica / Doutor em Matemática
7

Simulação numérica do escoamento bifásico em meios porosos heterogêneos empregando uma formulação semi-implícita, imitadores de fluxo e o método dos volumes finitos / Numerical simulation of two-phase flow in heterogeneous porous media applying a semi-implicit formulation, flux limiter and finite volume method

Julhane Alice Thomas Schulz 31 March 2009 (has links)
Neste trabalho apresentamos um esquema numérico para a simulação computacional de escoamentos bifásicos, água-óleo, em reservatórios de petróleo. O modelo matemático consiste em um sistema de equações diferenciais parciais não-linear nas incógnitas velocidade, pressão e saturação. Uma quebra de operadores a dois níveis possibilita uma maior eficiência ao método permitindo que a velocidade, fornecida pelo problema de velocidade-pressão, seja atualizada somente para determinados intervalos de tempo associados ao problema de transporte advectivo-difusivo em termos da saturação. O método dos volumes finitos é empregado na resolução numérica do problema de velocidade-pressão e do transporte de massa por advecção e difusão. Na solução do problema de transporte de massa utilizamos limitadores de fluxo na aproximação dos termos advectivos e diferenças centradas para os termos difusivos. O nosso simulador foi validado a partir de confrontações dos seus resultados com as soluções teóricas conhecidas para os problemas unidimensionais, equações de Burgers e de Buckley-Leverett, e com outros resultados numéricos em se tratando do escoamento bifásico água-óleo bidimensional em meios porosos heterogêneos. / A new numerical method is proposed for the solution of two-phase flow problem in petroleum reservoirs. The two-phase (water and oil) flow problem is governed by a pressure-velocity equation coupled to a saturation equation. For computational eficiency an operator spliting technique is used; distinct time steps can be used for the computation of transport and pressure-velocity problems. The finite volume method is used in the numerical solution of the velocity-pressure and mass transport problems. A flux limiter is used for the numerical discretization of the advective terms while centered schemes are employed for the diffusion terms in the mass transport problem. In the validation of our numerical method we compared numerical and theoretical solutions for one dimensional problems, Burgers and Buckley-Leverett equations, and compared our numerical results to others, in the case of oil-water flows in two dimensions for an heterogeneous porous media.
8

Simulação numérica do escoamento bifásico em meios porosos heterogêneos empregando uma formulação semi-implícita, imitadores de fluxo e o método dos volumes finitos / Numerical simulation of two-phase flow in heterogeneous porous media applying a semi-implicit formulation, flux limiter and finite volume method

Julhane Alice Thomas Schulz 31 March 2009 (has links)
Neste trabalho apresentamos um esquema numérico para a simulação computacional de escoamentos bifásicos, água-óleo, em reservatórios de petróleo. O modelo matemático consiste em um sistema de equações diferenciais parciais não-linear nas incógnitas velocidade, pressão e saturação. Uma quebra de operadores a dois níveis possibilita uma maior eficiência ao método permitindo que a velocidade, fornecida pelo problema de velocidade-pressão, seja atualizada somente para determinados intervalos de tempo associados ao problema de transporte advectivo-difusivo em termos da saturação. O método dos volumes finitos é empregado na resolução numérica do problema de velocidade-pressão e do transporte de massa por advecção e difusão. Na solução do problema de transporte de massa utilizamos limitadores de fluxo na aproximação dos termos advectivos e diferenças centradas para os termos difusivos. O nosso simulador foi validado a partir de confrontações dos seus resultados com as soluções teóricas conhecidas para os problemas unidimensionais, equações de Burgers e de Buckley-Leverett, e com outros resultados numéricos em se tratando do escoamento bifásico água-óleo bidimensional em meios porosos heterogêneos. / A new numerical method is proposed for the solution of two-phase flow problem in petroleum reservoirs. The two-phase (water and oil) flow problem is governed by a pressure-velocity equation coupled to a saturation equation. For computational eficiency an operator spliting technique is used; distinct time steps can be used for the computation of transport and pressure-velocity problems. The finite volume method is used in the numerical solution of the velocity-pressure and mass transport problems. A flux limiter is used for the numerical discretization of the advective terms while centered schemes are employed for the diffusion terms in the mass transport problem. In the validation of our numerical method we compared numerical and theoretical solutions for one dimensional problems, Burgers and Buckley-Leverett equations, and compared our numerical results to others, in the case of oil-water flows in two dimensions for an heterogeneous porous media.

Page generated in 0.1459 seconds