• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spaces of Analytic Functions and Their Applications

Mitkovski, Mishko 2010 August 1900 (has links)
In this dissertation we consider several problems in classical complex analysis and operator theory. In the first part we study basis properties of a system of complex exponentials with a given frequency sequence. We show that most of these basis properties can be characterized in terms of the invertibility properties of certain Toeplitz operators. We use this reformulation to give a metric description of the radius of l2-dependence. Using similar methods we solve the classical Beurling gap problem in the case of separated real sequences. In the second part we consider the classical Polýa-Levinson problem asking for a description of all real sequences with the property that every zero type entire function which is bounded on such a sequence must be a constant function. We first give a description in terms of injectivity of certain Toeplitz operators and then use this to give a metric description of all such sequences. In the last part we study the spectral changes of a partial isometry under unitary perturbations. We show that all the spectra can be described in terms of the characteristic function of the partial isometry that is being perturbed. Our main tool in the proofs is a Herglotz-type representation for generalized spectral measures. We furthermore use this representation to give a new proof of the classical Naimark's dilation theorem and to generalize Aleksandrov's disintegration theorem.
2

On the invertibility of linear sums of two idempotents and of two square zero operators

Wang, Chih-jen 09 July 2007 (has links)
Let P and Q be two idempotents, we review the results about the equivalence between the invertibility of a linear combination aP +bQ and that of P +Q, where a and b are any nonzero complex numbers with a + b eq 0. It is possible to extend the results to the case P and Q are square-zero elements. However, we will show that these extensions are impossible in general for P and Q being partial isometries or n-potents with n geq 3. We will show in case P and Q are square-zero elements, the invertibility of P +Q is equivalent to that of aP +bQ for nonzero a, b.
3

Transformation de Aluthge et vecteurs extrémaux / Aluthge Transform and Extremal Vectors

Verliat, Jérôme 21 December 2010 (has links)
Cette thèse s'articule autour de deux thèmes : une transformation de B(H) introduite par Aluthge et la méthode d'Ansari-Enflo. La première partie fait l'objet de l'étude de la transformation d’Aluthge qui a eu un impact important ces dernières années en théorie des opérateurs. Des résultats optimaux sur la stabilité d'un certain nombre de classes d'opérateurs, telles que la classe des isométries partielles et les classes associées au comportement asymptotique d'un opérateur, sont fournis. Nous étudions également l'évolution d'invariants opératoriels, tels que le polynôme minimal, la fonction minimum, l'ascente et la descente, sous l'action de la transformation ; nous comparons plus précisément les suites des noyaux et images relatives aux itérés d'un opérateur et de sa transformée de Aluthge. La deuxième partie est l'occasion d'étudier la théorie d'Ansari-Enflo, qui a permis de gros progrès pour le problème du sous-espace hyper-invariant. Nous développons plus particulièrement la notion fondatrice de la méthode, celle de vecteur extrémal. La localisation et une nouvelle caractérisation de ces vecteurs sont données. Leur régularité et leur robustesse, au regard de différents paramètres, sont éprouvées. Enfin, nous comparons les vecteurs extrémaux d'un shift à poids et ceux associés à sa transformée d’Aluthge. Cette étude aboutit à la construction d'une suite de vecteurs extrémaux associés aux itérés de la transformation d’Aluthge, pour laquelle certaines propriétés sont mises en évidence. / This thesis is based on two topics : a transformation of B(H) introduced by Aluthge and the Ansari-Enflo method. In the first part, we study the Aluthge transformation which really had an impact on operator theory in the past ten years. Some optimal results about stability for several operators classes, such as isometries class and classes of operators defined by their asymptotic behaviour, are given. We also study changes generated by Aluthge transform about some usual tools in operator theory like minimum polynomial, minimum function, ascent and descent ; precisely, we compare iterated kernels and iterated ranges sequences related to an operator and to its Aluthge transform. The second part is devoted to the study of the Ansari-Enflo theory, which allowed to make progress in the hyper-invariant subspace problem. We develop the notion of extremal vectors which is the fundamental point of the theory. We clarify their spatial localization and a new caracterisation for these vectors is given. Regularity and robustness with regard to different parameters are tried and tested. Finally, we compare extremal vectors associated with weighted shifts and the one corresponding to their Aluthge transform. This study leads to build a sequence of extremal vectors associated with the iterated Aluthge transform, for which we highlight several properties.

Page generated in 0.0507 seconds