• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 12
  • 4
  • 2
  • Tagged with
  • 57
  • 57
  • 18
  • 16
  • 14
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Impact des multitrajets sur les performances des systèmes de navigation par satellite : contribution à l'amélioration de la précision de localisation par modélisation bayésienne / Multipath impact on the performances of satellite navigation systems : contribution to the enhancement of location accuracy towards bayesian modeling

Nahimana, Donnay Fleury 19 February 2009 (has links)
De nombreuses solutions sont développées pour diminuer l'influence des multitrajets sur la précision et la disponibilité des systèmes GNSS. L'intégration de capteurs supplémentaires dans le système de localisation est l'une des solutions permettant de compenser notamment l'absence de données satellitaires. Un tel système est certes d'une bonne précision mais sa complexité et son coût limitent un usage très répandu.Cette thèse propose une approche algorithmique destinée à améliorer la précision des systèmes GNSS en milieu urbain. L'étude se base sur l'utilisation des signaux GNSS uniquement et une connaissance de l'environnement proche du récepteur à partir d'un modèle 3D du lieu de navigation.La méthode présentée intervient à l'étape de filtrage du signal reçu par le récepteur GNSS. Elle exploite les techniques de filtrage statistique de type Monte Carlo Séquentiels appelées filtre particulaire. L'erreur de position en milieu urbain est liée à l'état de réception des signaux satellitaires (bloqué, direct ou réfléchi). C'est pourquoi une information sur l'environnement du récepteur doit être prise en compte. La thèse propose également un nouveau modèle d'erreurs de pseudodistance qui permet de considérer les conditions de réception du signal dans le calcul de la position.Dans un premier temps, l'état de réception de chaque satellite reçu est supposé connu dans le filtre particulaire. Une chaîne de Markov, valable pour une trajectoire connue du mobile, est préalablement définie pour déduire les états successifs de réception des satellites. Par la suite, on utilise une distribution de Dirichlet pour estimer les états de réception des satellites / Most of the GNSS-based transport applications are employed in dense urban areas. One of the reasons of bad position accuracy in urban area is the obstacle's presence (building and trees). Many solutions are developed to decrease the multipath impact on accuracy and availability of GNSS systems. Integration of supplementary sensors into the localisation system is one of the solutions used to supply a lack of GNSS data. Such systems offer good accuracy but increase complexity and cost, which becomes inappropriate to equip a large fleet of vehicles.This thesis proposes an algorithmic approach to enhance the position accuracy in urban environment. The study is based on GNSS signals only and knowledge of the close reception environment with a 3D model of the navigation area.The method impacts the signal filtering step of the process. The filtering process is based on Sequential Monte Carlo methods called particle filter. As the position error in urban area is related to the satellite reception state (blocked, direct or reflected), information of the receiver environment is taken into account. A pseudorange error model is also proposed to fit satellite reception conditions. In a first work, the reception state of each satellite is assumed to be known. A Markov chain is defined for a known trajectory of the vehicle and is used to determine the successive reception states of each signal. Then, the states are estimated using a Dirichlet distribution
52

Estimation Bayésienne non Paramétrique de Systèmes Dynamiques en Présence de Bruits Alpha-Stables / Nonparametric Bayesian Estimition of Dynamical Systems in the Presence of Alpha-Stable Noise

Jaoua, Nouha 06 June 2013 (has links)
Dans un nombre croissant d'applications, les perturbations rencontrées s'éloignent fortement des modèles classiques qui les modélisent par une gaussienne ou un mélange de gaussiennes. C'est en particulier le cas des bruits impulsifs que nous rencontrons dans plusieurs domaines, notamment celui des télécommunications. Dans ce cas, une modélisation mieux adaptée peut reposer sur les distributions alpha-stables. C'est dans ce cadre que s'inscrit le travail de cette thèse dont l'objectif est de concevoir de nouvelles méthodes robustes pour l'estimation conjointe état-bruit dans des environnements impulsifs. L'inférence est réalisée dans un cadre bayésien en utilisant les méthodes de Monte Carlo séquentielles. Dans un premier temps, cette problématique a été abordée dans le contexte des systèmes de transmission OFDM en supposant que les distorsions du canal sont modélisées par des distributions alpha-stables symétriques. Un algorithme de Monte Carlo séquentiel a été proposé pour l'estimation conjointe des symboles OFDM émis et des paramètres du bruit $\alpha$-stable. Ensuite, cette problématique a été abordée dans un cadre applicatif plus large, celui des systèmes non linéaires. Une approche bayésienne non paramétrique fondée sur la modélisation du bruit alpha-stable par des mélanges de processus de Dirichlet a été proposée. Des filtres particulaires basés sur des densités d'importance efficaces sont développés pour l'estimation conjointe du signal et des densités de probabilité des bruits / In signal processing literature, noise's sources are often assumed to be Gaussian. However, in many fields the conventional Gaussian noise assumption is inadequate and can lead to the loss of resolution and/or accuracy. This is particularly the case of noise that exhibits impulsive nature. The latter is found in several areas, especially telecommunications. $\alpha$-stable distributions are suitable for modeling this type of noise. In this context, the main focus of this thesis is to propose novel methods for the joint estimation of the state and the noise in impulsive environments. Inference is performed within a Bayesian framework using sequential Monte Carlo methods. First, this issue has been addressed within an OFDM transmission link assuming a symmetric alpha-stable model for channel distortions. For this purpose, a particle filter is proposed to include the joint estimation of the transmitted OFDM symbols and the noise parameters. Then, this problem has been tackled in the more general context of nonlinear dynamic systems. A flexible Bayesian nonparametric model based on Dirichlet Process Mixtures is introduced to model the alpha-stable noise. Moreover, sequential Monte Carlo filters based on efficient importance densities are implemented to perform the joint estimation of the state and the unknown measurement noise density
53

Algorithmes de restauration bayésienne mono- et multi-objets dans des modèles markoviens / Single and multiple object(s) Bayesian restoration algorithms for Markovian models

Petetin, Yohan 27 November 2013 (has links)
Cette thèse est consacrée au problème d'estimation bayésienne pour le filtrage statistique, dont l'objectif est d'estimer récursivement des états inconnus à partir d'un historique d'observations, dans un modèle stochastique donné. Les modèles stochastiques considérés incluent principalement deux grandes classes de modèles : les modèles de Markov cachés et les modèles de Markov à sauts conditionnellement markoviens. Ici, le problème est abordé sous sa forme générale dans la mesure où nous considérons le problème du filtrage mono- et multi objet(s), ce dernier étant abordé sous l'angle de la théorie des ensembles statistiques finis et du filtre « Probability Hypothesis Density ». Tout d'abord, nous nous intéressons à l'importante classe d'approximations que constituent les algorithmes de Monte Carlo séquentiel, qui incluent les algorithmes d'échantillonnage d'importance séquentiel et de filtrage particulaire auxiliaire. Les boucles de propagation mises en jeux dans ces algorithmes sont étudiées et des algorithmes alternatifs sont proposés. Les algorithmes de filtrage particulaire dits « localement optimaux », c'est à dire les algorithmes d'échantillonnage d'importance avec densité d'importance conditionnelle optimale et de filtrage particulaire auxiliaire pleinement adapté sont comparés statistiquement, en fonction des paramètres du modèle donné. Ensuite, les méthodes de réduction de variance basées sur le théorème de Rao-Blackwell sont exploitées dans le contexte du filtrage mono- et multi-objet(s) Ces méthodes, utilisées principalement en filtrage mono-objet lorsque la dimension du vecteur d'état à estimer est grande, sont dans un premier temps étendues pour les approximations Monte Carlo du filtre Probability Hypothesis Density. D'autre part, des méthodes de réduction de variance alternatives sont proposées : bien que toujours basées sur le théorème de Rao-Blackwell, elles ne se focalisent plus sur le caractère spatial du problème mais plutôt sur son caractère temporel. Enfin, nous abordons l'extension des modèles probabilistes classiquement utilisés. Nous rappelons tout d'abord les modèles de Markov couple et triplet dont l'intérêt est illustré à travers plusieurs exemples pratiques. Ensuite, nous traitons le problème de filtrage multi-objets, dans le contexte des ensembles statistiques finis, pour ces modèles. De plus, les propriétés statistiques plus générales des modèles triplet sont exploitées afin d'obtenir de nouvelles approximations de l'estimateur bayésien optimal (au sens de l'erreur quadratique moyenne) dans les modèles à sauts classiquement utilisés; ces approximations peuvent produire des estimateurs de performances comparables à celles des approximations particulaires, mais ont l'avantage d'être moins coûteuses sur le plan calculatoire / This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in estimating hidden states from an historic of observations over time in a given stochastic model. The considered models include the popular Hidden Markov Chain models and the Jump Markov State Space Systems; in addition, the filtering problem is addressed under a general form, that is to say we consider the mono- and multi-object filtering problems. The latter one is addressed in the Random Finite Sets and Probability Hypothesis Density contexts. First, we focus on the class of particle filtering algorithms, which include essentially the sequential importance sampling and auxiliary particle filter algorithms. We explore the recursive loops for computing the filtering probability density function, and alternative particle filtering algorithms are proposed. The ``locally optimal'' filtering algorithms, i.e. the sequential importance sampling with optimal conditional importance distribution and the fully adapted auxiliary particle filtering algorithms, are statistically compared in function of the parameters of a given stochastic model. Next, variance reduction methods based on the Rao-Blackwell theorem are exploited in the mono- and multi-object filtering contexts. More precisely, these methods are mainly used in mono-object filtering when the dimension of the hidden state is large; so we first extend them for Monte Carlo approximations of the Probabilty Hypothesis Density filter. In addition, alternative variance reduction methods are proposed. Although we still use the Rao-Blackwell decomposition, our methods no longer focus on the spatial aspect of the problem but rather on its temporal one. Finally, we discuss on the extension of the classical stochastic models. We first recall pairwise and triplet Markov models and we illustrate their interest through several practical examples. We next address the multi-object filtering problem for such models in the random finite sets context. Moreover, the statistical properties of the more general triplet Markov models are used to build new approximations of the optimal Bayesian estimate (in the sense of the mean square error) in Jump Markov State Space Systems. These new approximations can produce estimates with performances alike those given by particle filters but with lower computational cost
54

Filtering and uncertainty propagation methods for model-based prognosis / Méthodes de filtrage et de propagation d'incertitudes pour le pronostic à base de modèles

Robinson, Elinirina Iréna 10 October 2018 (has links)
Les travaux présentés dans ce mémoire concernent le développement de méthodes de pronostic à base de modèles. Le pronostic à base de modèles a pour but d'estimer le temps qu'il reste avant qu'un système ne soit défaillant, à partir d'un modèle physique de la dégradation du système. Ce temps de vie restant est appelé durée de résiduelle (RUL) du système.Le pronostic à base de modèle est composé de deux étapes principales : (i) estimation de l'état actuel de la dégradation et (ii) prédiction de l'état futur de la dégradation. La première étape, qui est une étape de filtrage, est réalisée à partir du modèle et des mesures disponibles. La seconde étape consiste à faire de la propagation d'incertitudes. Le principal enjeu du pronostic concerne la prise en compte des différentes sources d'incertitude pour obtenir une mesure de l'incertitude associée à la RUL prédite. Les principales sources d'incertitude sont les incertitudes de modèle, les incertitudes de mesures et les incertitudes liées aux futures conditions d'opération du système. Afin de gérer ces incertitudes et les intégrer au pronostic, des méthodes probabilistes ainsi que des méthodes ensemblistes ont été développées dans cette thèse.Dans un premier temps, un filtre de Kalman étendu ainsi qu'un filtre particulaire sont appliqués au pronostic de propagation de fissure, en utilisant la loi de Paris et des données synthétiques. Puis, une méthode combinant un filtre particulaire et un algorithme de détection (algorithme des sommes cumulatives) a été développée puis appliquée au pronostic de propagation de fissure dans un matériau composite soumis à un chargement variable. Cette fois, en plus des incertitudes de modèle et de mesures, les incertitudes liées aux futures conditions d'opération du système ont aussi été considérées. De plus, des données réelles ont été utilisées. Ensuite, deux méthodes de pronostic sont développées dans un cadre ensembliste où les erreurs sont considérées comme étant bornées. Elles utilisent notamment des méthodes d'inversion ensembliste et un observateur par intervalles pour des systèmes linéaires à temps discret. Enfin, l'application d'une méthode issue du domaine de l'analyse de fiabilité des systèmes au pronostic à base de modèles est présentée. Il s'agit de la méthode Inverse First-Order Reliability Method (Inverse FORM).Pour chaque méthode développée, des métriques d'évaluation de performance sont calculées dans le but de comparer leur efficacité. Il s'agit de l'exactitude, la précision et l'opportunité. / In this manuscript, contributions to the development of methods for on-line model-based prognosis are presented. Model-based prognosis aims at predicting the time before the monitored system reaches a failure state, using a physics-based model of the degradation. This time before failure is called the remaining useful life (RUL) of the system.Model-based prognosis is divided in two main steps: (i) current degradation state estimation and (ii) future degradation state prediction to predict the RUL. The first step, which consists in estimating the current degradation state using the measurements, is performed with filtering techniques. The second step is realized with uncertainty propagation methods. The main challenge in prognosis is to take the different uncertainty sources into account in order to obtain a measure of the RUL uncertainty. There are mainly model uncertainty, measurement uncertainty and future uncertainty (loading, operating conditions, etc.). Thus, probabilistic and set-membership methods for model-based prognosis are investigated in this thesis to tackle these uncertainties.The ability of an extended Kalman filter and a particle filter to perform RUL prognosis in presence of model and measurement uncertainty is first studied using a nonlinear fatigue crack growth model based on the Paris' law and synthetic data. Then, the particle filter combined to a detection algorithm (cumulative sum algorithm) is applied to a more realistic case study, which is fatigue crack growth prognosis in composite materials under variable amplitude loading. This time, model uncertainty, measurement uncertainty and future loading uncertainty are taken into account, and real data are used. Then, two set-membership model-based prognosis methods based on constraint satisfaction and unknown input interval observer for linear discete-time systems are presented. Finally, an extension of a reliability analysis method to model-based prognosis, namely the inverse first-order reliability method (Inverse FORM), is presented.In each case study, performance evaluation metrics (accuracy, precision and timeliness) are calculated in order to make a comparison between the proposed methods.
55

Estimation du modèle GARCH à changement de régimes et son utilité pour quantifier le risque de modèle dans les applications financières en actuariat

Augustyniak, Maciej 12 1900 (has links)
Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité. / The Markov-switching GARCH model is the foundation of this thesis. This model offers rich dynamics to model financial data by allowing for a GARCH structure with time-varying parameters. This flexibility is unfortunately undermined by a path dependence problem which has prevented maximum likelihood estimation of this model since its introduction, almost 20 years ago. The first half of this thesis provides a solution to this problem by developing two original estimation approaches allowing us to calculate the maximum likelihood estimator of the Markov-switching GARCH model. The first method is based on both the Monte Carlo expectation-maximization algorithm and importance sampling, while the second consists of a generalization of previously proposed approximations of the model, known as collapsing procedures. This generalization establishes a novel relationship in the econometric literature between particle filtering and collapsing procedures. The discovery of this relationship is important because it provides the missing link needed to justify the validity of the collapsing approach for estimating the Markov-switching GARCH model. The second half of this thesis is motivated by the events of the financial crisis of the late 2000s during which numerous institutional failures occurred because risk exposures were inappropriately measured. Using 78 different econometric models, including many generalizations of the Markov-switching GARCH model, it is shown that model risk plays an important role in the measurement and management of long-term investment risk in the context of variable annuities. Although the finance literature has devoted a lot of research into the development of advanced models for improving pricing and hedging performance, the approaches for measuring dynamic hedging effectiveness have evolved little. This thesis offers a methodological contribution in this area by proposing a statistical framework, based on regression analysis, for measuring the effectiveness of dynamic hedges for long-term investment guarantees.
56

Estimation du modèle GARCH à changement de régimes et son utilité pour quantifier le risque de modèle dans les applications financières en actuariat

Augustyniak, Maciej 12 1900 (has links)
Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité. / The Markov-switching GARCH model is the foundation of this thesis. This model offers rich dynamics to model financial data by allowing for a GARCH structure with time-varying parameters. This flexibility is unfortunately undermined by a path dependence problem which has prevented maximum likelihood estimation of this model since its introduction, almost 20 years ago. The first half of this thesis provides a solution to this problem by developing two original estimation approaches allowing us to calculate the maximum likelihood estimator of the Markov-switching GARCH model. The first method is based on both the Monte Carlo expectation-maximization algorithm and importance sampling, while the second consists of a generalization of previously proposed approximations of the model, known as collapsing procedures. This generalization establishes a novel relationship in the econometric literature between particle filtering and collapsing procedures. The discovery of this relationship is important because it provides the missing link needed to justify the validity of the collapsing approach for estimating the Markov-switching GARCH model. The second half of this thesis is motivated by the events of the financial crisis of the late 2000s during which numerous institutional failures occurred because risk exposures were inappropriately measured. Using 78 different econometric models, including many generalizations of the Markov-switching GARCH model, it is shown that model risk plays an important role in the measurement and management of long-term investment risk in the context of variable annuities. Although the finance literature has devoted a lot of research into the development of advanced models for improving pricing and hedging performance, the approaches for measuring dynamic hedging effectiveness have evolved little. This thesis offers a methodological contribution in this area by proposing a statistical framework, based on regression analysis, for measuring the effectiveness of dynamic hedges for long-term investment guarantees.
57

Multivariate stochastic loss reserving with common shock approaches

Vu, Phuong Anh 01 1900 (has links)
No description available.

Page generated in 0.1141 seconds