1 |
Segregation of Particles of Variable Size and Density in Falling Suspension DropletsFaletra, Melissa Kathleen 01 January 2014 (has links)
The problem of the falling under gravity suspension droplet was examined for cases where the droplet contains particles with different densities and different sizes. Cases examined include droplets composed of uniform-size particles with two different densities, of uniform-density particles of two different sizes, and of a distribution of particles of different densities. The study was conducted using both simulations based on Oseenlet particle interactions and laboratory experiments. It is observed that when the particles in the suspension droplet have different sizes and densities, an interesting segregation phenomenon occurs in which lighter/smaller particles are transported downward with the droplet and preferentially leave the droplet by entering into the droplet tail, whereas heavier/larger particles remain for longer periods of time in the droplet. When computations are performed with two particle densities or two particle sizes, a point is eventually reached where all of the lighter/smaller particles have been ejected from the droplet, and the droplet continues to fall with only the heavier/larger particles. A simple model explaining three stages of this segregation process is presented.
|
2 |
Investigation of Momentum and Heat Transfer in Flow Past Suspensions of Non-Spherical ParticlesCao, Ze 11 March 2021 (has links)
Investigation of momentum and heat transfer between the fluid and solid phase is critical to the study of fluid-particle systems. Dense suspensions are characterized by the solid fraction (ratio of solid volume to total volume), the particle Reynolds number, and the shape of the particle. The behavior of non-spherical particles deviates considerably from spherical particle shapes which have been studied extensively in the literature. Momentum transfer, to first-order, is driven by drag forces experienced by the particles in suspension, followed by lift and lateral forces, and also through the transmission of fluid torque to the particles. The subject of this thesis is a family of prolate ellipsoidal particle geometries of aspect ratios (AR) 2.5, 5.0 and 10.0 at nominal solid fractions (φ) between 0.1 and 0.3, and suspensions of cylinders of AR=0.25. The nominal particle Reynolds number (Re) is varied between 10 to 200, representative of fluidized beds. Fluid forces and heat transfer coefficients are obtained numerically by Particle Resolved Simulations (PRS) using the Immersed Boundary Method (IBM). The method enables the calculation of the interstitial flow and pressure field surrounding each particle in suspension leading to the direct integration of fluid forces acting on each particle in the suspension.
A substantial outcome of the research is the development of a new drag force correlation for random suspensions of prolate ellipsoids over the full range of geometries and conditioned studied. In many practical applications, especially as the deviation from the spherical shape increases, particles are not oriented randomly to the flow direction, resulting in suspensions which have a mean preferential orientation. It is shown that the mean suspension drag varies linearly with the orientation parameter, which varies from -2.0 for particles oriented parallel to the flow direction to 1.0 for particles normal to the flow direction. This result is significant as it allows easy calculation of drag force for suspension with any preferential orientation.
The heat transfer coefficient or Nusselt number is investigated for prolate ellipsoid suspensions. Significantly, two methods of calculating the heat transfer coefficient in the literature are reconciled and it is established that one asymptotes to the other. It is also established that unlike the drag force, at low Reynolds number the suspension mean heat transfer coefficient is very sensitive to the spatial distribution of particles or local-to-particle solid fractions. For the same mean solid fraction, suspensions dominated by particle clusters or high local solid fractions can exhibit Nusselt numbers which are lower than the minimum Nusselt number imposed by pure conduction on a single particle in isolation. This results from the dominant effect of thermal wakes at low Reynolds numbers. As the Reynolds number increases, the effect of particle clusters on heat transfer becomes less consequential.
For the 0.25 aspect ratio cylinder, it was found that while existing correlations under predicted the drag forces, a sinusoidal function F_(d,θ)=F_(d,θ=0°)+(F_(d,θ=90°)-F_(d,θ=0°) )sin(θ) captured the variation of normalized drag with respect to inclination angle over the range 10≤Re≤300 and 0≤φ≤0.3. Further the mean ensemble drag followed F_d=F_(d,θ=0°)+1/2(F_(d,θ=90°)-F_(d,θ=0°)). It was shown that lift forces were between 20% to 80% of drag forces and could not be neglected in models of fluid-particle interaction forces. Comparing the pitching fluid torque to collision torque during an elastic collision showed that as the particle equivalent diameter, density, and collision velocities decreased, fluid torque could be of the same order of magnitude as collisional torque and it too could not be neglected from models of particle transport in suspensions. / Doctor of Philosophy / Momentum and heat exchange between the fluids (air, water…) and suspensions of solid particles plays a critical role in power generation, chemical processing plants, pharmaceuticals, in the environment, and many other applications. One of the key components in momentum exchange are the forces felt by the particles in the suspension due to the flow of the fluid around them and the amount of heat the fluid can transfer to or from the particles. The fluid forces and heat transfer depend on many factors, chief among them being the properties of the fluid (density, viscosity, thermal properties) and the properties of the particles in the suspension (size, shape, density, thermal properties, concentration). This introduces a wide range of parameters that have the potential to affect the way the fluid and particles behave and move.
Experimental measurements are very difficult and expensive to conduct in these systems and computational modeling can play a key role in characterization. For accuracy, computational models have to have the correct physical laws encoded in the software. The objective of this thesis is to use very high-fidelity computer models to characterize the forces and heat transfer under different conditions to develop general formulas or correlations which can then be used in less expensive computer models. Three basic particle shapes are considered in this study, a sphere, a disk like cylindrical particles, and particles of ellipsoidal shapes. More specifically, Particle Resolved Simulations of flow through suspensions of ellipsoids with aspect ratio of 2.5, 5, 10 and cylinders with aspect ratio of 0.25 are performed. The Reynolds number range covered is [10, 200] for ellipsoids and [10, 300] for cylinders with solid fraction range of [0.1, 0.3]. New fluid drag force correlations are proposed for the ellipsoid and cylinder suspensions, respectively, and heat transfer behavior is also investigated.
|
3 |
Transition à la turbulence des écoulements de suspension : simulations numériques et analyse physique / Transition to turbulence in suspension flows : numerical simulations and physical analysisLoisel, Vincent 09 December 2013 (has links)
Le travail de cette thèse aborde le sujet de l’influence des particules non-pesantes et de taille macroscopique sur les écoulements en canal dans des conditions proches du seuil de la transition laminaire-turbulent. Les suspensions sont faiblement concentrées (fraction volumique φ = 5%). Le couplage hydrodynamique existant entre la phase dispersée et la phase continue est résolu numériquement par la Force-Coupling Method, et les particules sont suivies d’une façon lagrangienne. Dans un écoulement laminaire de Couette ou de Poiseuille plan, nous montrons que les contraintes induites par la phase solide augmentent avec l’inertie, et l’influence de la concentration est plus faible qu’en régime de Stokes. Les particules avancent avec un retard dans la direction de l’écoulement et migrent à travers les lignes de courant (effet Segré-Silberberg en Poiseuille). Les vitesses de migration et de glissement s’amplifient avec l’inertie et sont du même ordre de grandeur quand Rep = O(1). Quand les particules sont lâchées librement dans un écoulement de Poiseuille plan en-deça du seuil critique de transition à la turbulence, la suspension initiale- ment homogène (φ = 5%) devient stratifiée, après un temps d’écoulement de plusieurs dizaines d’unités de temps (rapport de la hauteur du canal sur la vitesse moyenne de l’écoulement). Après une centaine d’unités de temps, nous observons le développement d’une instabilité à l’interface entre la zone chargée en particules et la zone de fluide pur. Des motifs dunaires prennent place dans la direction de la vorticité. Ces motifs sont soutenus par des écoulements secondaires d’intensités faibles mais non-nulles. Dans un écoulement au-dessus du seuil de transition, nous avons étudié les profils des phases continues et dispersées et réalisé des visualisations 3D afin de comprendre pourquoi les particules macroscopiques diminuent le nombre de Reynolds critique de relaminarisation de l’écoulement. Nous observons que les particules provoquent une augmentation significative des fluctuations de vitesses dans les directions transverses et qu’elles modifient les structures rotationnelles de l’écoulement, qui deviennent plus petites, plus nombreuses et plus énergétiques (plus grandes vitesses de rotation). Le coefficient de frottement pariétal de l’écoulement de suspension en régime de transition est supérieur à celui de l’écoulement monophasique. Quand le nombre de Reynolds est diminué et que l’écoulement devient finalement laminaire, le coefficient de frottement pariétal rejoint la loi laminaire d’un écoulement monophasique, à condition de substituer la viscosité effective de la suspension à la viscosité du fluide dans l’expression du nombre de Reynolds. D’après nos résultats, la turbulence de l’écoulement de suspension est conservée jusqu’à des nombres de Reynolds bien inférieurs à celui de l’écoulement monophasique en canal, en accord avec les observations ex- périmentales de Matas, Morris et Guazzelli (PRL, 2003) pour une géométrie cylindrique. Par ailleurs, nous montrons que selon le sens de la transition, laminaire → turbulent ou turbulent → laminaire, le nombre de Reynolds critique de transition d’un régime à l’autre n’est pas le même. Nous n’avons pas observé d’influence significative de la concentration en ce qui concerne la valeur du nombre de Reynolds critique de relaminarisation pour les deux concentrations étudiées (φ = 2.5% et 5%). / This PhD addresses the influence of macroscopic and neutrally buoyant particles on the channel flows close to the laminar-turbulent transition regime. The suspension flow is moderately concentrated (solid volumetric concentration _ = 5%). The hydrodynamic coupling between the dispersed and carrier fluid is numerically resolved using the Force-Coupling Method approach. Particle trajectories are obtained by lagrangian tracking. In laminar wall-bounded flows, we show that the stress induced by the solid phase increases with inertia, and that the effect of the concentration is weaker than in the Stokes regime. The particles lag the flow and they migrate across the streamlines (Segré-Silberberg effect in Poiseuille flow). The migration and slip velocities are of the same order of magnitude for Rep = O(1). When the particles are freely suspended in a Poiseuille flow below the transition threshold, the initially homogeneous suspension (_ = 5%) becomes stratified after several ten time units (channel height/average flow velocity). After a hundred time units, the different rheological properties of the suspension segregated parts induce an instability yielding the formation of dune-like patterns, sustained by weak but finite secondary flows. In the fluctuating flow regime, we studied the profiles of the continuous and dispersed phase and realized 3D visualizations in order to understand why finite size particles delay the relaminarization threshold. The particles induce a significant increase of the velocity fluctuations in the transverse directions and they modify the rotational flow structures, which become smaller, more numerous and more energetic (larger rotation velocity). The wall-friction coefficient of the suspension flow in the transition regime is larger than the single-phase flow case. When the Reynolds number is decreased and the flow becomes laminar, the friction coefficient recovers the laminar law of a single phase flow provided that the fluid viscosity is replaced by the effective suspension viscosity in the Reynolds number definition. Our results clearly show that the two-phase channel flow turbulence is conserved down to a threshold well below the single phase flow limit, in agreement with the observations of Matas, Morris et Guazzelli (PRL, 2003) for a cylindrical geometry. In addition, we show that according to the transition direction, i.e. laminar 7! turbulent or turbulent 7! laminar, the switch from a regime to another does not occur at the same critical Reynolds number. Finally, in the limit of moderately concentrated (_ = 2.5−5%) suspension flow in a channel, the concentration has no significant influence on the critical Reynolds number.
|
4 |
Methods Development and Validation for Large Scale Simulations of Dense Particulate Flow systems in CFD-DEM FrameworkElghannay, Husam A. 05 April 2018 (has links)
Computational Fluid Dynamics Coupled to Discrete Element Method (CFD-DEM) is widely used in simulating a large variety of particulate flow system. This Eulerian-Lagrangian technique tracks all the particles included in the system by the application of point mass models in their equation of motion. CFD-DEM is a more accurate (and more expensive) technique compared to an Eulerian-Eulerian representation. Compared to Particle Resolved Simulations (PRS), CFD-DEM is less expensive since it does not require resolving the flow around each particles and thus can be applied to larger scale systems. Nevertheless, simulating industrial and natural scale systems is a challenge for this numerical technique. This is because the cost of CFD-DEM is proportional to the number of particles in the system under consideration. Thus, massively parallel codes are used to tackle these problems with the help of supercomputers.
In this thesis, the CFD-DEM capability in the in-house code Generalized Incompressible Direct and Large Eddy Simulation of Turbulence (GenIDLEST) is used to investigate large scale dense particulate flow systems. Central to the contributions made by this work are developments to reduce the computational cost of CFD-DEM. This includes the development and validation of reduced order history force model for use in large scale systems and validation of the representative particle model, which lumps multiple particles into one, thus reducing the number of particles that need to be tracked in the system. Numerical difficulties in the form of long integration times and instabilities encountered in fully coupling the fluid and particle phases in highly energetic systems are alleviated by proposing a partial coupling scheme which maintains the accuracy of full-coupling to a large extent but at a reduced computational cost. The proposed partial-coupling is found to have a better convergence behavior compared to the full coupling in large systems and can be used in cases where full coupling is not feasible or impractical to use. Alternative modeling approaches for the tangential treatment of the soft-sphere impact model to avoid storing individual impact deformation are proposed and tested. A time advancement technique is developed and proposed for use in dense particulate systems with a hard-sphere impact model. The new advancement technique allows for the use of larger time steps which can speed-up the time to solution by as much as an order of magnitude. / PHD / Computational Fluid Dynamics Coupled to Discrete Element Method (CFD-DEM) is widely used in simulating a large variety of particulate flow system. Nevertheless, simulating industrial and natural scale systems is a challenge for this numerical technique. This is because the cost of CFD-DEM is proportional to the number of particles in the system under consideration. The current work aims to provide alternative efficient models that can reduce the computational requirement of CFD-DEM. This includes reducing the computational time to run the calculation, reducing the memory requirement, or providing an alternative method to get reasonably accurate predictions when the proper implementation fails to converge.
Different elements of CFD-DEM were targeted in the current work. The testing and validation work covered different applications and ranged over wide operation conditions. Comparisons with available experimental and numerical work was conducted to evaluate the suggested methods. Good to reasonable agreement was achieved with the suggested models and treatments. Savings in calculation time and resources varies depending on what elements/models are being used. A significant reduction of the calculation time and memory resources was achieved with the use of a reduced order force model. The savings in computational time and memory resources opens the door for using the proposed models in applications with large dense systems of particles where other models become impractical to use.
|
5 |
An electromagnetically actuated rotary gate microvalve with bistabilityLuharuka, Rajesh 03 January 2007 (has links)
Two types of rotary gate microvalves are developed for flow modulation in a microfluidic system that operates at high flow rate and/or uses particulate flow. This research work encompasses design, microfabrication, and experimental evaluation of these microvalves in three distinct areas compliant micromechanism, microfluidics, and electromagnetic actuation. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifices. The gate is suspended by a novel fully-compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constraints the gate in all other degrees of freedom. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow/port configurations. The suspended gate is made of a soft magnetic material and is electromagnetically actuated like a rotor in a variable-reluctance stepper motor. Therefore, an external electromagnetic (EM) actuation at the integrated set of posts (stator) causes the gate mass to switch from its default angular position to a second angular position. The microvalve chip is fabricated by electroplating a soft magnetic material, Permalloy (Ni80Fe20) in a sacrificial photoresist mold on a Silicon substrate. The inlet/outlet orifices are then etched into the Silicon substrate from the back-side using deep-reactive ion etch process. Finally, the gate structure is released by stripping the PR and seed layers. This research work presents the realization of a new microvalve design that is distinct from traditional diaphragm-type microvalves. The test results are encouraging and show the potential of these microvalves in effectively modulating flow in microfluidic systems that may not require a tight seal. The microvalve uses a novel in-plane rotary bistable micromechanism that may have other applications such as optical shutters, micro-locks, and passive check valves.
|
6 |
An Embedded Membrane Meshfree Fluid-Structure Interaction Solver for Particulate and Multiphase FlowKE, RENJIE 26 May 2023 (has links)
No description available.
|
Page generated in 0.1004 seconds