• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 65
  • 26
  • 26
  • 21
  • 16
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 267
  • 61
  • 57
  • 47
  • 39
  • 37
  • 35
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

The Effects of Nano-Hydroxyapatite in a Double Antibiotic Paste-Loaded Methycellulose Carrier on Dental Pulp Stem Cells

Everhart, Adam R. January 2019 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The effects of hydroxyapatite in a DAP-loaded MC carrier on dental pulp stem cells Introduction: Regenerative endodontic procedures (REP) require disinfection techniques to eliminate bacteria from the infected immature root canal system and promote new growth of the pulp-dentin complex. Double antibiotic paste (DAP), a mixture of ciprofloxacin and metronidazole, has shown efficacy in doing so while minimizing cytotoxicity on dental pulp stem cells (DPSC). Stem cells, scaffolding, and growth factors are necessary in the maturation, proliferation, and differentiation of mesenchymal stem cells into the root canal system. Nano-hydroxyapatite (n-HA) has a history of biocompatibility and, in addition, has shown promising effects as a tissue bioengineering material. Objective: The aim of this in vitro study was to investigate the proliferation and mineralization of DPSC in the presence of 1% DAP and methylcellulose (MC) with varying concentrations of nano-hydroxyapatite. Materials and Methods: DPSC were plated in 24-well plates containing culture media. The next day, semi-permeable 0.1 mm Transwell chambers were inserted into the wells to separate the reservoirs for medicaments. Treatment paste composed of methylcellulose containing 1% DAP with either 0.25%, 0.50%, or 1.0% nano-hydroxyapatite was added along with culture media. Methylcellulose alone and calcium hydroxide (Ultracal) were used as control groups. After 3 days, cells were evaluated for cytotoxic effects using an MTS proliferation assay (n = 10, in triplicate). DPSCs were also cultured with these medicaments for 7 days in osteogenic media and evaluated for alkaline phosphatase (ALP) activity and mineralization activity (n = 13, in triplicate). Comparisons between groups for differences in mineralization, BSA, and ALP activity were performed using analysis of variance (ANOVA), with different variances allowed for each group and a random effect included in the model to account for correlation within each of the three trials. A simulation-based model was used to adjust for multiple comparisons. Results: Addition of n-HA treatment groups increased mineralization significantly greater than calcium hydroxide, with MC alone and MC+DAP+0.5% HA providing the greatest effect. Regarding ALP, all HA concentrations performed significantly greater than MC and DAP concentrations. Proliferation demonstrated similar metabolic activity in all experimental groups with few comparisons significant. Conclusion: The challenge in REPs is to maintain survival, and preferably promote the proliferation and development of DPSCs into the pulp-dentin complex with a consistent treatment outcome. The combination of DAP with hydroxyapatite may allow for both disinfection and improved mineralization and cellular differentiation. This contribution has shown significant ability to increase stem cell differentiation into an osteogenic lineage as well as calcium deposition, indicating end goal results of regenerative procedures.
222

The impact of hydroxyapatite on alkaline phosphatase activity and mineral deposition of dental pulp stem cells using a double antibiotic paste loaded methylcellulose carrier

Fischer, Benjamin I. January 2020 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: Regenerative endodontic procedures (REPs) are a type of endodontic treatment aimed at replacing damaged tooth structures, including dentin and root structures, as well as cells of the pulp-dentin complex. Double antibiotic paste (DAP) has been shown to be efficacious in achieving disinfection of the root canal system while minimizing cytotoxicity to dental pulp stem cells (DPSCs). Hydroxyapatite (HA) is an extracellular, mineralized component of bone that has shown much promise as a scaffold in the field of regenerative medicine. Objective: The objective of this study was to evaluate the effects of HA in a DAP loaded methylcellulose (MC) carrier on the differentiation and mineral deposition of DPSC over time. Materials and Methods: DPSCs were plated in 24-well plates with culture media. The following day, semi-permeable 0.1 m chambers were inserted into the wells to separate the reservoirs and permit delivery of medicaments. 100 L treatment paste composed of MC with 1% DAP and either 0.5% or 1.0% nano-HA was added, followed by additional culture media. After 3 days of treatment, medicaments were removed and DPSCs were cultured for an additional 9 days with replacement of media every 3-4 days. At Day 12, DPSCs were evaluated for alkaline phosphatase (ALP) activity using a biochemical assay and mineral deposition using an Alizarin Red S Ca2+ staining assay (4 wells/group). Comparisons between groups were performed using one-way analysis of variance (ANOVA) with a 5% significance level used for all tests. Results: A trend towards increased ALP and mineral deposition activity was noted among the groups with HA added to DAP with MC. Although these trends were not statistically significant, a trend towards increased ALP and mineral deposition was observed after 3-day medicament exposure. The results were similar to previous findings using 7-day medicament treatments. Conclusion: The addition of HA showed a trend towards improved differentiation and mineral deposition of DPSCs compared to DAP with MC. Although additional studies are required, these results showed suggest that even with a shortened treatment time, increased differentiation and mineral deposition of DPSCs may be possible. This study provides additional support that low concentration DAP in a MC carrier has potential application in regenerative endodontic procedures. The novel addition of HA may provide additional osteogenic potential.
223

Improving jet printing quality for printed circuit boards : Optimizing first dot jetting deposition through experimental design and response surface methodology

Hedlund, William, Sjöberg, Gustav January 2023 (has links)
Printed circuit boards (PCBs) are essential components in various electronic devices, playing a vital role in their functionality. Over time, PCBs have evolved significantly, becoming smaller, more complex, and multi-layered to meet the demands of advancing technology and consumer preferences. The quality of solder paste deposits is measured by circularity, volume, positioning, and the number of satellites. Mycronic is a supplier of jet printing machines for PCB manufacturers and needs to investigate and counteract an unwanted variation in volume and positioning within the first dot of the solder paste strip, and its so-called “sea saw” effect for the following three dots.  This master’s thesis has two aims. The first aim is to develop and evaluate an experimental method to reduce variation between the dots in the strip. The second aim is to reduce the variation between the 1st dot and the following three dots by finding a combination of pre-feed, first, second, and third waveforms to obtain improved precision, volume, circularity, and reduced volume variation. Using an experimental design a full factorial design was used, examining six experimental factors. The design was further augmented with a central composite design to describe the second-order model. The knowledge from the experiment was used to optimize and improve the quality factors of jet printing, which were verified with an additional experiment. The results of the study provided compelling evidence that only the selected experimental factors had a significant impact on improving the volume metric. It was observed that the presence or absence of satellites during the experiment did not have any effect on the results, and neither did the positioning and circularity factors contribute to any improvement or deterioration. Specifically, the most significant difference in volume between 1st and following three dots for the optimized solution is 0.5 nl, and the currently used settings have a difference of 2.65 nl. The experimental approach employed in this master's thesis holds excellent promise for Mycronic, as it paves the way for the future development of piezo-actuation profiles (i.e. specific settings for the jet printer). The potential contributions to the industry are significant, particularly in terms of advancing the methodology for investigating and enhancing the quality metrics of piezo-actuation profiles through experimental means. This research opens up new avenues for Mycronic to refine its printing processes and improve overall print quality, ultimately leading to better outcomes for their customers.
224

Strength of Nano-Cemented Paste Backfill Cured in Iso- and Non-Isothermal Conditions

Benkirane, Othmane 20 January 2023 (has links)
One hundred billion tons of mine solid waste are estimated to be produced worldwide each year. In Canada, the mining and oil industries produce the most solid and semi-solid waste in the country, with more than a billion tons each year. In the earlier days of mining, the initial practices that were used to contain these waste materials consisted of surface storage, river dumping or just simple abandonment, while the more recent practices include dam impoundment and underground waste fill. These methods however can potentially cause environmental hazards and geotechnical problems. Against this context and as a result of stricter environmental regulations, cemented paste backfilling has been developed as a solution. This relatively new technology uses the produced waste tailings to backfill the mine stopes, greatly reducing their environmental impact while offering proper structural support in an efficient manner. However, the cost of cemented paste backfill (CPB) is greatly impacted by the binder content which can constitute up to 75% of its total cost. Additionally, the binder is usually mostly composed of ordinary Portland cement, and its production is highly energy-intensive and generates a large volume of carbon dioxide (CO₂). Indeed, it is estimated that the cement industry accounts for approximately 7% of the global anthropogenic CO₂ emissions, which is expected to increase on an annual basis. All of these factors have compelled the mining industry to seek alternatives for cement to enhance CPB strength, in hopes of reducing its carbon footprint. Against this context, this study investigates the effect of the addition of nanoparticles, namely nano silica (SiO₂) and nano-calcium carbonate (CaCO₃), on the strength development of CPB cured at a constant room temperature and in non-isothermal conditions. Nanoparticles have been studied and used as chemical admixtures in different cementitious materials with promising results; non-isothermal curing conditions better reflect the in-situ thermal curing conditions of CPB. Thus, numerous different laboratory tests and analyses, including uniaxial compressive strength (UCS), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests, thermogravimetric/derivative thermogravimetric (TG/DTG) analyses and electrical conductivity monitoring, have been conducted on CPB samples with or without nanoparticles, and cured at room temperatures or under non-isothermal conditions. The non-isothermal conditions replicate the development of temperature in two different sizes of CPB structures in the field. The results show that CPB that contains nanoparticles show a higher UCS over the entire period of curing in all of the tested conditions. The mechanical performance is further enhanced when tested under higher temperatures in non-isothermal temperature profiles. Most of the strength increase takes place at the early ages (3 days) of the testing. The reason for the improvement in the mechanical strength is linked to accelerated binder hydration and the nucleating and filler effects of the nano-material, which is corroborated by results obtained through microstructural analyses and EC monitoring. The use of natural gold tailings affects the mechanical performance of CPB and the accelerating effect of the nanoparticles due to sulphate attacks. Overall, these promising findings can help to contribute to reducing the carbon footprint of mining activities, and improve the efficiency and cost-effectiveness of mine backfilling processes.
225

Effect of Powder and Target Properties on Food Powder Coating and Comparison of Solid-liquid Separation (SLS) and Vacuum Concentration of Tomato Juice

Sumonsiri, Nutsuda 20 June 2012 (has links)
No description available.
226

Effect of Antibiotic Pastes on Chemical Structure and Microhardness of Radicular Dentin

Prather, Blake January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: Regenerative endodontic therapy in immature teeth with necrotic pulps triggers continued root development, thereby improving the prognosis of these teeth. Disinfection of the canal is accomplished with an intracanal medicament, such as triple antibiotic paste (TAP) composed of metronidazole, ciprofloxacin, and minocycline. A modified triple antibiotic paste (MTAP) that replaces minocycline with clindamycin has recently been suggested to avoid the tooth discoloration and potential demineralization from minocycline. The effect these pastes have on radicular dentin is unknown. Objectives: The aim of this study was to investigate the effects of two intracanal medicaments used during endodontic regeneration, TAP and MTAP, at concentrations of 1 g/mL and 1 mg/mL, on the microhardness and chemical structure of radicular dentin. Materials and Methods: Roots from extracted, unrestored, non-carious human premolar teeth were sectioned. An antibiotic paste (MTAP or TAP) or sterile water (control) was applied to treatment groups and stored for four weeks in 80-percent humidity at 37 °C. The effect of each paste on the microhardness of radicular dentin was measured using a Vickers Microhardness Tester (n = 17) to take three pretreatment and post-treatment measurements at both 500 µm and 1000 µm from the pulp-dentin interface. The chemical structure was assessed from dentin specimens treated with the same medicaments or sterile water for four weeks. After treatment, three measurements were taken on each specimen using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy to measure the phosphate/amide I ratios of dentin (n = 7). Results: The 1 g/mL of TAP or MTAP and the 1 mg/mL methylcellulose-based TAP caused significant reduction in microhardness of roots compared with untreated control roots at 500 µm and 1000 µm from the pulp-dentin interface. Furthermore, the methylcellulose-based 1 mg/mL TAP and MTAP caused significantly less reduction in microhardness compared with 1 g/mL TAP and MTAP. The 1 g/mL of TAP and DAP caused significantly lower phosphate/amide I ratios compared with other groups. Conclusion: The use of methylcellulose based 1 mg/mL of TAP and MTAP may minimize the reduction in microhardness of roots compared with the currently used 1 g/mL concentration of these antibiotics.
227

Diluted antibiotics for treating traumatized immature teeth

Sabrah, Ala'a Hussein Aref, 1984- January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Endodontic regeneration (ERP) has been successfully used in the treatment of traumatized immature teeth. The procedure has three essential steps: disinfecting the root canal (i.e. triple antibiotic paste (TAP) or double antibiotic paste (DAP)), provoking bleeding inside the canal to form a scaffold upon which pulp stem cells will be deposited and continue root growth, and creating a good coronal seal. Previous research has reported that antibiotic pastes (TAP and DAP) are cytotoxic to stem cells in the concentrations commonly used in endodontic regeneration (1000 mg/mL). To decrease the adverse effects on stem cells and increase the rate of success of the regeneration, defining appropriate antibiotic concentrations for ERP is critical. In this project, five in-vitro experiments were conducted to determine the breakpoint dilutions of both TAP and DAP medicaments, and to prepare a suitable novel pastes containing diluted TAP or DAP medicaments for ERP. In the first experiment, we compared the antibacterial effect of TAP, and DAP against early biofilm formation of Enterococcus faecalis (E. faecalis) and Porphyromonas gingivalis bacteria. In the second study, we investigated the antibacterial effect of various dilutions of TAP and DAP antibiotic medicaments against established E. faecalis biofilm. In the third experiment, we investigated longitudinally the residual antibacterial activity of human radicular dentin treated with 1000, 1 or 0.5 mg/ml of TAP and DAP. In the fourth study, we investigated the cytotoxic effect of various dilutions of TAP and DAP antibiotic medicaments on the survival of human dental pulp stem cells (DPSC). And in the fifth experiment, we investigated the antibacterial and cytotoxic effect of novel intracanal medicaments consisting of methylcellulose (MC) and/or propylene glycol (PG) mixed with 1mg/ml of TAP or DAP. 1 mg/ml of DAP or TAP medicaments had a significant antibacterial effect against early bacterial biofilm formation, and established bacterial biofilm. Furthermore, 1 mg/ml had a residual antibacterial activity comparable to 1000 mg/ml. The novel intracanal medicaments had comparable antibacterial effect to currently used medicaments (1000 mg/ml). Additionally, the novel intracanal medicaments significantly enhanced DPSC metabolic activity, compared to currently used medicaments in endodontic regeneration procedures.
228

Stanovení butylhydroxyanisolu na elektrodách modifikovaných uhlíkovými nanotrubičkami / Determination of butylhydroxyanisole using electrodes modified by carbon nanotubes

Krejčová, Markéta January 2015 (has links)
This work was focused on study of a behaviour of the food additivum butylated hydroxyanisole on modified carbon electrodes by the voltammetric techniques - cyclic and differential pulse voltammetry. Glassy carbon and carbon paste electrode were used. Multiwalled carbon nanotubes (MWCNT) in combination with three different binders (acetonitrile, nafione or chitosane) were employed for the electrode modification. Carbon paste electrode was unable to modificate with film containing carbon nanotubes and acetonitrile, its active surface was treated only with nafione and chitosane film. All three mentioned modifications were applied in case of glassy carbon electrode. Butylated hydroxyanisole provided a significantly higher signal using electrodes modified with carbon nanotubes with all three binders in contrast to electrodes without any surface modification. The glassy carbon electrode with carbon nanotube / acetonitrile film on its surface appeared to be the most effective for analytical purposes. Voltammetric determination of butylated hydroxyanisole using this electrode provided a better defined and higher analytical signal and lower relative standard deviations in comparison with other ways of modification. The limit of detection of butylated hydroxyanisole obtained by cyclic voltammetry on glassy...
229

Stanovení vybraných terpenoidů pomocí HPLC s elektrochemickou detekcí / Determination of selected terpenoids by HPLC with electrochemical detection

Mužíková, Jana January 2012 (has links)
This thesis deals with the determination of carvacrol, thymol, and eugenol by HPLC with electrochemical detection. Carbon paste electrode and boron doped diamond film electrode were used as the working electrodes. For the comparison, UV spectrophotometric detection at 275 nm was used besides the electrochemical detection. The separation was performed on LiChroCART 125-4, RP-18e (5 µm) column. Optimum separation conditions were found: mobile phase consisting of acetonitrile and acetate buffer in ratio 50:50, the optimum buffer pH was pH 5. The optimum potential of working electrode during electrochemical detection was +0,8 V and +1,2 V for carbon paste electrode and boron doped diamond film electrode, respectively. For both electrodes, repeatability of the measurement was examined; the surface of both electrodes had to be renewed between the measurements. Under the obtained optimum conditions, calibration dependences were measured. The studied substances were determined in real samples, in Thymus vulgaris L. and Achillea millefolium L. and in thyme-containing tea and syrup.
230

Valorisation du verre dans le béton : étude expérimentale du comportement de pâte de ciment et du mortier : rhéologie, mécanique et durabilité

Nguyen, Thi Bich Hau 17 December 2013 (has links)
Cette étude concerne l’ajout de billes de verre de dimension variant de 1 à 50 m dans des matrices cimentaires. Les travaux ont comme objectif dans un premier temps la caractérisation des propriétés physiques et rhéologiques à l’état frais des suspensions cimentaires à deux échelles : la pâte de ciment et le mortier. Puis dans un deuxième temps l’étude de l’influence des microbilles de verre sur les propriétés physiques, mécaniques et durabilité du mortier durci. Des séries d’expériences normalisées ont été faites pour caractériser l’influence des billes de verre sur les indicateurs à l’état frais : la consistance et la prise des pâtes de ciment. Les propriétés mécaniques et de durabilité sont quantifiées au jeune âge (de 3 à 28 jours) et à long terme (de 28 jours à 112 jours). L’étude sur les gels d’hydratation et sur la microstructure du mortier durci a été faite à l’aide de la technique de la microscopie électronique à balayage. Des méthodes de caractérisation complémentaires pour examiner la propagation d’onde, la ségrégation et l’étalement ont également été employées. Les résultats obtenus par l’ensemble des essais évaluent le rôle des microbilles de verre sur les comportements des suspensions de pâtes de ciment et du mortier à l’état frais, et du mortier à l’état durci. Ceci met en évidence l’intérêt rhéologique, mécanique et l’effet sur la durabilité des microbilles de verre dans un matériau cimentaire. / The aim of this work is the valorisation of recycled waste materials in cement paste and mortar in order to reuse these resources for replacing natural aggregates in concrete. Our study concerns the use of a microsphere glass powder (MGP) with a particle size from 1 to 50 m into the cement matrix. This experimental work first focuses on the effect of the MGP on the workability properties of fresh cement paste and fresh mortar and on the physical, mechanical and durability properties of mortar. Many standard tests have been conducted for the characterisation of the behavior of the fresh cement paste i.e the consistency and the setting of fresh cement paste. The durability properties at early age (from 3 to 28 days) and at long time (from 28 days to 112 days) have been also quantified. We employed the scanning electron microscopy for the mortar microstructure analysis. Some supplementary tests like the ultrasonic wave propagation, the segregation and the flow properties on the vibrated table have been also used. The primary results have proved the effect of the MGP on the behaviour of the fresh cement paste, fresh mortar and mortar. The presence of MGP showed interesting modifications on the rheology, mechanical and durability properties of the cement system.

Page generated in 0.0395 seconds