• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling default probabilities: The classical vs. machine learning approach / Modellering av fallissemang: Klassisk metod vs. maskininlärning

Jovanovic, Filip, Singh, Paul January 2020 (has links)
Fintech companies that offer Buy Now, Pay Later products are heavily dependent on accurate default probability models. This is since the fintech companies bear the risk of customers not fulfilling their obligations. In order to minimize the losses incurred to customers defaulting several machine learning algorithms can be applied but in an era in which machine learning is gaining popularity, there is a vast amount of algorithms to select from. This thesis aims to address this issue by applying three fundamentally different machine learning algorithms in order to find the best algorithm according to a selection of chosen metrics such as ROCAUC and precision-recall AUC. The algorithms that were compared are Logistic Regression, Random Forest and CatBoost. All these algorithms were benchmarked against Klarna's current XGBoost model. The results indicated that the CatBoost model is the optimal one according to the main metric of comparison, the ROCAUC-score. The CatBoost model outperformed the Logistic Regression model by seven percentage points, the Random Forest model by three percentage points and the XGBoost model by one percentage point. / Fintechbolag som erbjuder Köp Nu, Betala Senare-tjänster är starkt beroende av välfungerande fallissemangmodeller. Detta då dessa fintechbolag bär risken av att kunder inte betalar tillbaka sina krediter. För att minimera förlusterna som uppkommer när en kund inte betalar tillbaka finns flera olika maskininlärningsalgoritmer att applicera, men i dagens explosiva utveckling på maskininlärningsfronten finns det ett stort antal algoritmer att välja mellan. Denna avhandling ämnar att testa tre olika maskininlärningsalgoritmer för att fastställa vilken av dessa som presterar bäst sett till olika prestationsmått så som ROCAUC och precision-recall AUC. Algoritmerna som jämförs är Logistisk Regression, Random Forest och CatBoost. Samtliga algoritmers prestanda jämförs även med Klarnas nuvarande XGBoost-modell. Resultaten visar på att CatBoost-modellen är den mest optimala sett till det primära prestationsmåttet ROCAUC. CatBoost-modellen var överlägset bättre med sju procentenheter högre ROCAUC än Logistisk Regression, tre procentenheter högre ROCAUC än Random Forest och en procentenhet högre ROCAUC än Klarnas nuvarande XGBoost-modell
2

Mathematical modelling of blood coagulation and thrombus formation under flow in normal and pathological conditions / Modélisation mathématique de la coagulation sanguine et la formation du thrombus sous l'écoulement dans les conditions normales et pathologiques

Bouchnita, Anass 04 December 2017 (has links)
Cette thèse est consacrée à la modélisation mathématique de la coagulation sanguine et de la formation de thrombus dans des conditions normales et pathologiques. La coagulation sanguine est un mécanisme défensif qui empêche la perte de sang suite à la rupture des tissus endothéliaux. C'est un processus complexe qui est règlementé par différents mécanismes mécaniques et biochimiques. La formation du caillot sanguin a lieu dans l'écoulement sanguin. Dans ce contexte, l'écoulement à faible taux de cisaillement stimule la croissance du caillot tandis que la circulation sanguine à fort taux de cisaillement la limite. Les désordres qui affectent le système de coagulation du sang peuvent provoquer différentes anomalies telles que la thrombose (coagulation exagérée) ou les saignements (insuffisance de coagulation). Dans la première partie de la thèse, nous présentons un modèle mathématique de coagulation sanguine. Le modèle capture la dynamique essentielle de la croissance du caillot dans le plasma et le flux sanguin quiescent. Ce modèle peut être réduit à un modèle qui consiste en une équation de génération de thrombine et qui donne approximativement les mêmes résultats. Nous avons utilisé des simulations numériques en plus de l'analyse mathématique pour montrer l'existence de différents régimes de coagulation sanguine. Nous spécifions les conditions pour ces régimes sur différents paramètres pathophysiologiques du modèle. Ensuite, nous quantifions les effets de divers mécanismes sur la croissance du caillot comme le flux sanguin et l'agrégation plaquettaire. La partie suivante de la thèse étudie certaines des anomalies du système de coagulation sanguine. Nous commençons par étudier le développement de la thrombose chez les patients présentant une carence en antihrombine ou l'une des maladies inflammatoires. Nous déterminons le seuil de l'antithrombine qui provoque la thrombose et nous quantifions l'effet des cytokines inflammatoires sur le processus de coagulation. Puis, nous étudions la compensation de la perte du sang après un saignement en utilisant un modèle multi-échelles qui décrit en particulier l'érythropoïèse et la production de l'hémoglobine. Ensuite, nous évaluons le risque de thrombose chez les patients atteints de cancer (le myélome multiple en particulier) et le VIH en combinant les résultats du modèle de coagulation sanguine avec les produits des modèles hybrides (discret-continues) multi-échelles des systèmes physiologiques correspondants. Finalement, quelques applications cliniques possibles de la modélisation de la coagulation sanguine sont présentées. En combinant le modèle de formation du caillot avec les modèles pharmacocinétiques pharmacodynamiques (PK-PD) des médicaments anticoagulants, nous quantifions l'action de ces traitements et nous prédisons leur effet sur des patients individuels / This thesis is devoted to the mathematical modelling of blood coagulation and clot formation under flow in normal and pathological conditions. Blood coagulation is a defensive mechanism that prevents the loss of blood upon the rupture of endothelial tissues. It is a complex process that is regulated by different mechanical and biochemical mechanisms. The formation of the blood clot takes place in blood flow. In this context, low-shear flow stimulates clot growth while high-shear blood circulation limits it. The disorders that affect the blood clotting system can provoke different abnormalities such thrombosis (exaggerated clotting) or bleeding (insufficient clotting). In the first part of the thesis, we introduce a mathematical model of blood coagulation. The model captures the essential dynamics of clot growth in quiescent plasma and blood flow. The model can be reduced to a one equation model of thrombin generation that gives approximately the same results. We used both numerical simulations and mathematical investigation to show the existence of different regimes of blood coagulation. We specify the conditions of these regimes on various pathophysiological parameters of the model. Then, we quantify the effects of various mechanisms on clot growth such as blood flow and platelet aggregation. The next part of the thesis studies some of the abnormalities of the blood clotting system. We begin by investigating the development of thrombosis in patients with antihrombin deficiency and inflammatory diseases. We determine the thrombosis threshold on antithrombin and quantify the effect of inflammatory cytokines on the coagulation process. Next, we study the recovery from blood loss following bleeding using a multiscale model which focuses on erythropoiesis and hemoglobin production. Then, we evaluate the risk of thrombosis in patients with cancer (multiple myeloma in particular) and HIV by combining the blood coagulation model results with the output of hybrid multiscale models of the corresponding physiological system. Finally, possible clinical applications of the blood coagulation modelling are provided. By combining clot formation model with pharmacokinetics-pharmacodynamics (PK-PD) models of anticoagulant drugs, we quantify the action of these treatments and predict their effect on individual patients

Page generated in 0.0731 seconds