• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Smart technology enabled residential building energy use and peak load reduction and their effects on occupant thermal comfort

Cetin, Kristen Sara 03 September 2015 (has links)
Residential buildings in the United States are responsible for the consumption of 38% of electricity, and for much of the fluctuations in the power demands on the electric grid, particularly in hot climates. Residential buildings are also where occupants spend nearly 69% of their time. As “smart” technologies, including electric grid-connected devices and home energy management systems are increasingly available and installed in buildings, this research focuses on the use of these technologies combined with available energy use data in accomplishing three main objectives. The research aims to: (a) better understand how residential buildings currently use electricity, (b) evaluate the use of these smart technologies and data to reduce buildings’ electricity use and their contribution to peak loads, and (c) develop a methodology to assess the impacts of these operational changes on occupant thermal comfort. Specifically this study focuses on two of the most significant electricity consumers in residential buildings: large appliances, including refrigerators, clothes washers, clothes dryers and dishwashers, and heating, ventilation and air conditioning (HVAC) systems. First, to develop an improved understanding of current electricity use patterns of large appliances and residential HVAC systems, this research analyzes a large set of field-collected data. This dataset includes highly granular electricity consumption information for residential buildings located in a hot and humid climate. The results show that refrigerators have the most reliable and consistent use, while the three user-dependent appliances varied more greatly among houses and by time-of-day. In addition, the daily use patterns of appliances vary in shape depending on a number of factors, particularly whether or not the occupants work from home, which contrasts with common residential building energy modeling assumptions. For the all-air central HVAC systems studied, the average annual HVAC duty cycle was found to be approximately 20%, and varied significantly depending on the season, time of day, and type of residential building. Duty cycle was also correlated to monthly energy use. This information provides an improvement to previously assumed values in indoor air modeling studies. Overall, the work presented here enhances the knowledge of how the largest consumers of residential buildings, large appliances and HVAC, operate and use energy, and identifies influential factors that affect these use patterns. The methodologies developed can be applied to determine use patterns for other energy consuming devices and types of buildings, to further expand the body of knowledge in this area. Expanding on this knowledge of current energy use, smart large appliances and residential HVAC systems are investigated for use in reducing peak electric grid loads, and building energy use, respectively. This includes a combination of laboratory testing, field-collected data, and modeling. For appliance peak load reduction, refrigerators are found to have a good demand response potential, in part due to the nearly 100% of residential buildings that have one or more of these appliances, and the predictability of their energy consumption behavior. Dryers provide less consistent energy use across all homes, but have a higher individual peak power demand during afternoon and evening peak use times. These characteristics also make dryers also a good candidate for demand response. The study of continuous commissioning of HVAC systems using energy data found that both runtime and energy use are increased, and cooling capacity and efficiency are reduced due to the presence of faults or inefficiencies. The correction of these faults have an estimated 1.4% to 5.7% annual impact on a residential building’s electricity use in a cooling-dominated climate such as the one studied. Overall, appliance peak load reduction results are useful for utility companies and policy makers in identifying what smart appliance may provide the most peak energy reduction potential through demand response programs. The results of the HVAC study provides a methodology that can be used with energy use data, to determine if an HVAC system has the characteristics implying an inefficiency may be present, and to quantify the annual savings resulting from its correction. The final aspect of this research focuses on the development of a tool to enable an assessment the effect of operational changes of a building associated with energy and peak load reduction on occupant comfort. This is accomplished by developing a methodology that uses the response surface methodology (RSM), combined with building performance data as input, and uncertainly analysis. A second-order RSM model constructed using a full-factorial design was generally found to provide strong agreement to in and out-of-sample building simulation data when evaluating the Average Percent of People Dissatisfied (PPD[subscript avg]). This 5-step methodology was applied to assess occupant thermal comfort in a residential building due to a 1-hour demand response event and a time-of-use pricing rate schedule for a variety of residential building characteristics. This methodology provides a model that can quickly assess, over a continuous range of values for each of the studied design variables, the effect on occupant comfort. This may be useful for building designers and operators who wish to quickly assess the effect of a change in building operations on occupants. / text
2

A new integrated procedure for energy audits and analyses of buildings / M.F. Geyser

Geyser, Martinus Fredrik January 2003 (has links)
A rapid growth in the national electricity demand is placing an ever-increasing demand on the national electricity supply utility, Eskom. Projections show that the load demand in South Africa may exceed the installed capacity by as early as 2007. This is mainly due to the increase in demand in the residential sector as a result of the electrification of rural and previously disadvantaged communities. However, the industrial and commercial sectors also have a role in this increase. In an attempt to reduce the demand for electricity Eskom has adopted its Demand Side Management (DSM) initiative. This initiative is aimed at lowering the electricity demand in peak times through energy efficiency (EE) or load shift, out of peak demand times. Eskom is implementing the DSM strategy by financing Energy Service Companies (ESCOs) to reduce the demand load of major electricity end-users during peak times. Buildings consume a large percentage of the total energy supply in the world. Most of the energy consumed in buildings is used by the heating, ventilation and air-conditioning (HVAC) systems, as well as lighting. However, a large potential for energy savings exists in buildings. Studies have shown that up to 70% of the electricity consumption of a building can be saved through retrofit studies. However, to capitalise on these opportunities, the ESCOs require tools and procedures that would enable them to accomplish energy savings studies quickly and efficiently. It should be a holistic approach to the typical ESCO building audit. A study of current available software programs showed the lack of holistic tools aimed specifically at retrofit audits, and therefore also the need for such a program. The building simulation program most suited to the retrofit study was chosen and it was used in a retrofit audit. By emulating a retrofit audit with this software, its performance in the field, both positive and negative, could be established. With the experience gained from the retrofit study, as well as input from ESCOs in the industry, a need for such a retrofit tool was established. The simulation program that was tested in the retrofit study is the tool Quickcontrol, as well as the newer version of the program, entitled QEC. The case study showed that even though these packages are well suited to ESCO work, they have certain drawbacks in view of the holistic project approach. The ESCOs require a simple, fast, and integrated procedure for energy audits. This procedure should be embodied in a software program. This study proposes a new integrated procedure for energy audits and the analyses of buildings, in the form of a software tool. This new tool is geared towards the ESCO building audit, in both South A6ica and internationally. It is designed to enable a diplomate engineer to accomplish a building energy and retrofit analysis in two weeks, leading the user through all the main project steps, from data acquisition to writing of the final project report. This is a significant improvement, since it normally takes 50 man-days for an experienced and trained engineering team to complete a full building audit. This tool was used in a case study to test its validity and accuracy. It was found that certain situations would arise in which the criteria that were set for the program would not be adequate. The results from the case study were favourable and satisfied the criteria that were set for the procedure. / Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
3

A new integrated procedure for energy audits and analyses of buildings / M.F. Geyser

Geyser, Martinus Fredrik January 2003 (has links)
A rapid growth in the national electricity demand is placing an ever-increasing demand on the national electricity supply utility, Eskom. Projections show that the load demand in South Africa may exceed the installed capacity by as early as 2007. This is mainly due to the increase in demand in the residential sector as a result of the electrification of rural and previously disadvantaged communities. However, the industrial and commercial sectors also have a role in this increase. In an attempt to reduce the demand for electricity Eskom has adopted its Demand Side Management (DSM) initiative. This initiative is aimed at lowering the electricity demand in peak times through energy efficiency (EE) or load shift, out of peak demand times. Eskom is implementing the DSM strategy by financing Energy Service Companies (ESCOs) to reduce the demand load of major electricity end-users during peak times. Buildings consume a large percentage of the total energy supply in the world. Most of the energy consumed in buildings is used by the heating, ventilation and air-conditioning (HVAC) systems, as well as lighting. However, a large potential for energy savings exists in buildings. Studies have shown that up to 70% of the electricity consumption of a building can be saved through retrofit studies. However, to capitalise on these opportunities, the ESCOs require tools and procedures that would enable them to accomplish energy savings studies quickly and efficiently. It should be a holistic approach to the typical ESCO building audit. A study of current available software programs showed the lack of holistic tools aimed specifically at retrofit audits, and therefore also the need for such a program. The building simulation program most suited to the retrofit study was chosen and it was used in a retrofit audit. By emulating a retrofit audit with this software, its performance in the field, both positive and negative, could be established. With the experience gained from the retrofit study, as well as input from ESCOs in the industry, a need for such a retrofit tool was established. The simulation program that was tested in the retrofit study is the tool Quickcontrol, as well as the newer version of the program, entitled QEC. The case study showed that even though these packages are well suited to ESCO work, they have certain drawbacks in view of the holistic project approach. The ESCOs require a simple, fast, and integrated procedure for energy audits. This procedure should be embodied in a software program. This study proposes a new integrated procedure for energy audits and the analyses of buildings, in the form of a software tool. This new tool is geared towards the ESCO building audit, in both South A6ica and internationally. It is designed to enable a diplomate engineer to accomplish a building energy and retrofit analysis in two weeks, leading the user through all the main project steps, from data acquisition to writing of the final project report. This is a significant improvement, since it normally takes 50 man-days for an experienced and trained engineering team to complete a full building audit. This tool was used in a case study to test its validity and accuracy. It was found that certain situations would arise in which the criteria that were set for the program would not be adequate. The results from the case study were favourable and satisfied the criteria that were set for the procedure. / Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
4

Energy Efficiency through Thermal Energy Storage : Possibilities for the Swedish Building Stock

Heier, Johan January 2013 (has links)
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage. / Behovet av värme och kyla i byggnader utgör en betydande del av ett lands totala energianvändning och att reducera detta behov är av yttersta vikt för att nå nationella samt internationella mål för minskad energianvändning och minskade utsläpp. En viktig väg för att nå dessa mål är att öka andelen förnyelsebar energi för kylning och uppvärmning av byggnader. Det kanske största hindret med detta är det faktum att det ofta råder obalans mellan tillgången på förnyelsebar energi och behovet av värme och kyla, vilket gör att denna energi inte kan utnyttjas direkt. Detta är ett av problemen som kan lösas genom att använda termisk energilagring (TES) för att lagra värme eller kyla från när det finns tillgängligt till dess att det behövs. Denna avhandling fokuserar på kombinationen av TES och byggnader för att nå högre energieffektivitet för uppvärmning och kylning. Olika tekniker för energilagring, samt även kombinationen av TES och byggnader, har undersökts och sammanfattats genom en omfattande litteraturstudie. För att kunna identifiera byggnadstyper vanliga i Sverige gjordes även en kartläggning av det svenska byggnadsbeståndet. Inom ramen för denna avhandling resulterade kartläggningen i valet av tre typbyggnader, två småhus samt en kontorsbyggnad, utav vilka de två småhusen användes i en simuleringsfallstudie av passiv TES genom ökad termisk massa (både sensibel och latent). Den andra fallstudien som presenteras i denna avhandling är en utvärdering av ett existerande borrhålslager för säsongslagring av solvärme i ett bostadsområde. I detta fall användes verkliga mätdata i utvärderingen samt i jämförelser med tidigare utvärderingar. Litteraturstudien visade att användningen av TES öppnar upp möjligheter för minskat energibehov och minskade topplaster för värme och kyla samt även möjligheter till en ökad andel förnyelsebar energi för att täcka energibehovet. Genom att använda passiv lagring genom ökad termisk massa i byggnaden är det även möjligt att minska variationer i inomhustemperaturen och speciellt minska övertemperaturer under varma perioder; något som kan leda till att byggnader som normalt behöver aktiv kylning kan klara sig utan sådan. Analysen av kombinationen av TES och byggnadstyper bekräftade att TES har en betydande potential för ökad energieffektivitet i byggnader, men belyste även det faktum att det fortfarande krävs mycket forskning innan vissa av lagringsteknikerna kan bli kommersiellt tillgängliga. I simuleringsfallstudien drogs slutsatsen att en ökad termisk massa endast kan bidra till en liten minskning i värmebehovet, men att tiden med inomhustemperaturer över 24 °C kan minskas med upp till 20 %. Fallstudien av borrhålslagret visade att även om själva lagringssystemet fungerade som planerat så ledde värmeförluster i resten av systemet, samt vissa problem med driften av systemet, till en lägre solfraktion än beräknat. Arbetet inom denna avhandling har visat att TES redan används med framgång i många byggnadsapplikationer (t.ex. varmvattenberedare eller ackumulatortankar för lagring av solvärme) men att det fortfarande finns en stor potential i en utökad användning av TES. Det finns dock hinder såsom behovet av mer forskning för både vissa lagringstekniker samt lagringsmaterial, i synnerhet för lagring med fasändringsmaterial och termokemisk lagring.
5

Energy Efficiency through Thermal Energy Storage : Possibilities for the Swedish Building Stock

Heier, Johan January 2013 (has links)
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage. / Behovet av värme och kyla i byggnader utgör en betydande del av ett lands totala energianvändning och att reducera detta behov är av yttersta vikt för att nå nationella samt internationella mål för minskad energianvändning och minskade utsläpp. En viktig väg för att nå dessa mål är att öka andelen förnyelsebar energi för kylning och uppvärmning av byggnader. Det kanske största hindret med detta är det faktum att det ofta råder obalans mellan tillgången på förnyelsebar energi och behovet av värme och kyla, vilket gör att denna energi inte kan utnyttjas direkt. Detta är ett av problemen som kan lösas genom att använda termisk energilagring (TES) för att lagra värme eller kyla från när det finns tillgängligt till dess att det behövs. Denna avhandling fokuserar på kombinationen av TES och byggnader för att nå högre energieffektivitet för uppvärmning och kylning. Olika tekniker för energilagring, samt även kombinationen av TES och byggnader, har undersökts och sammanfattats genom en omfattande litteraturstudie. För att kunna identifiera byggnadstyper vanliga i Sverige gjordes även en kartläggning av det svenska byggnadsbeståndet. Inom ramen för denna avhandling resulterade kartläggningen i valet av tre typbyggnader, två småhus samt en kontorsbyggnad, utav vilka de två småhusen användes i en simuleringsfallstudie av passiv TES genom ökad termisk massa (både sensibel och latent). Den andra fallstudien som presenteras i denna avhandling är en utvärdering av ett existerande borrhålslager för säsongslagring av solvärme i ett bostadsområde. I detta fall användes verkliga mätdata i utvärderingen samt i jämförelser med tidigare utvärderingar. Litteraturstudien visade att användningen av TES öppnar upp möjligheter för minskat energibehov och minskade topplaster för värme och kyla samt även möjligheter till en ökad andel förnyelsebar energi för att täcka energibehovet. Genom att använda passiv lagring genom ökad termisk massa i byggnaden är det även möjligt att minska variationer i inomhustemperaturen och speciellt minska övertemperaturer under varma perioder; något som kan leda till att byggnader som normalt behöver aktiv kylning kan klara sig utan sådan. Analysen av kombinationen av TES och byggnadstyper bekräftade att TES har en betydande potential för ökad energieffektivitet i byggnader, men belyste även det faktum att det fortfarande krävs mycket forskning innan vissa av lagringsteknikerna kan bli kommersiellt tillgängliga. I simuleringsfallstudien drogs slutsatsen att en ökad termisk massa endast kan bidra till en liten minskning i värmebehovet, men att tiden med inomhustemperaturer över 24 °C kan minskas med upp till 20 %. Fallstudien av borrhålslagret visade att även om själva lagringssystemet fungerade som planerat så ledde värmeförluster i resten av systemet, samt vissa problem med driften av systemet, till en lägre solfraktion än beräknat. Arbetet inom denna avhandling har visat att TES redan används med framgång i många byggnadsapplikationer (t.ex. varmvattenberedare eller ackumulatortankar för lagring av solvärme) men att det fortfarande finns en stor potential i en utökad användning av TES. Det finns dock hinder såsom behovet av mer forskning för både vissa lagringstekniker samt lagringsmaterial, i synnerhet för lagring med fasändringsmaterial och termokemisk lagring. / <p>QC 20130225</p>

Page generated in 0.0915 seconds