• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 10
  • 7
  • 4
  • 4
  • 3
  • Tagged with
  • 93
  • 93
  • 93
  • 30
  • 15
  • 14
  • 13
  • 13
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
52

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain January 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
53

Investigations on the Effect of Manufacturing on the Contact Resistance Behavior of Metallic Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells

Turan, Cabir 04 May 2011 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have emerged as a strong and promising candidate to replace internal combustion engines (ICE) due their high efficiency, high power density and near-zero hazardous emissions. However, their commercialization waits for solutions to bring about significant cost-reductions and significant durability for given power densities. Bipolar plate (BPP) with its multi-faceted functions is one of the essential components of the PEMFC stacks. Stainless steel alloys are considered promising materials of choice for bipolar plate (BPP) applications in polymer electrolyte membrane fuel cells (PEMFC) due to their relatively low cost and commercial availability in thin sheets. Stainless steel materials build a protective passive metal oxide layer on their surface against corrosion attack. This passive layer does not demonstrate good electrical conductivity and increases interfacial electric contact resistance (ICR) between BPP and gas diffusion layer GDL in PEMFC. Lower ICR values are desired to reduce parasitic power losses and increase current density in order to improve efficiency and power density of PEMFC. This study aimed to bring about a broader understanding of manufacturing effects on the BPP contact resistance. In first stage, BPP samples manufactured with stamping and hydroforming under different process conditions were tested for their electrical contact resistance characteristics to reveal the effect of manufacturing type and conditions. As a general conclusion, stamped BPPs showed higher contact conductivity than the hydroformed BPPs. Moreover, pressure in hydroforming and geometry had significant effects on the contact resistance behavior of BPPs. Short term corrosion exposure was found to decrease the contact resistance of bipolar plates. Results also indicated that contact resistance values of uncoated stainless steel BPPs are significantly higher than the respective target set by U.S. Department of Energy. Proper coating or surface treatments were found to be necessary to satisfy the requirements. In the second stage, physical vapor deposition technique was used to coat bipolar plates with CrN, TiN and ZrN coatings at 0.1, 0.5 and 1 μm coating thicknesses. Effects of different coatings and coating thickness parameters were studied as manufactured BPPs. Interfacial contact resistance tests indicated that CrN coating increased the contact resistance of the samples. 1 µm TiN coated samples showed the best performance in terms of low ICR; however, ICR increased dramatically after short term exposure to corrosion under PEMFC working conditions. ZrN coating also improved conductivity of the SS316L BPP samples. It was found that the effect of coating material and coating thickness was significant whereas the manufacturing method and BPP channel size slightly affected the ICR of the metallic BPP samples. Finally, effect of process sequence on coated BPPs was investigated. In terms of ICR, BPP samples which were coated prior to forming exhibited similar or even better performance than coated after forming samples. Thus, continuous coating of unformed stripes, then, applying forming process seemed to be favorable and worth further investigation in the quest of making cost effective BPPs for mass production of PEMFC.
54

Étude de dispositifs de recirculation d’hydrogène à pompage électrochimique pour systèmes pile à combustible PEM / Study of Electrochemical Hydrogen Recirculation Devices suited to PEM Fuel Cell System

Grisard, Benjamin de 17 December 2014 (has links)
Les piles à combustible PEM sont des systèmes complexes faisant intervenir de nombreux auxiliaires. Ces auxiliaires ont un impact sur le rendement global du système. Une des possibilités pour améliorer le rendement global du système est d'améliorer le rendement de ces auxiliaires et notamment celui du système de recirculation d'hydrogène.Le système de recirculation d'hydrogène permet à la fois l'apport de l'hydrogène à l'anode mais il permet également de gérer l'eau présente. Deux solutions sont proposées pour modifier le système de recirculation.La première solution utilise la consommation d'hydrogène à l'anode comme une pompe à vide permettant alors grâce à l'ouverture et à la fermeture cyclique d'une électrovanne, la mise en mouvement du gaz dans la boucle de recirculation. La deuxième solution consiste à utiliser un stack de pile à combustible comme une pompe à hydrogène qui s'intègre alors dans une boucle de recirculation classique.Ces deux solutions ont été étudiées analytiquement, numériquement (MATLAB©, SIMULINK©) et expérimentalement.La première solution a montré sa capacité à se substituer à un système de recirculation à pompe classique en ayant des performances de recirculation et une compacité équivalente mais surtout en améliorant le rendement global du système pile de 2.5% à sa puissance nominale.La seconde solution a montré une bonne capacité à gérer la recirculation d'hydrogène et sa spécificité de pompage de l'hydrogène seul ouvre la possibilité à de nombreux autres systèmes. / PEM fuel cells are complex systems involving many auxiliaries. These auxiliaries have an impact on the overall system performance. One possibility to improve the overall performance of the system is to improve the performance of these auxiliaries and in particular the system of hydrogen recirculation.The hydrogen recirculation system allows both the supply of hydrogen to the anode but also the management of the water present within the system. Two solutions are proposed to modify the recirculation system.The first solution uses the hydrogen consumption at the anode as a vacuum pumping mechanism used as the motive power of the recirculation loop. The second solution uses a fuel cell stack as a hydrogen pump which is then integrated into a conventional recirculation loop.Both solutions have been studied analytically, numerically (MATLAB ©, SIMULINK ) and experimentally.The first solution has demonstrated its ability to replace a conventional recirculation pump having equivalent recirculation performances and an equivalent compactness. It permits to improve the overall performance of the fuel cell by 2.5% at nominal power.The second solution has shown a good ability to manage the hydrogen recirculation. Its specificity to solely pump hydrogen opens up the possibility of many other systems. Anodic gases purification appears to be highly promising.
55

Contribution au diagnostic et à la commande de la pile à combustible de type PEM / Contribution to the diagnosis and control of PEM fuel cell

Niane, Moustapha 09 October 2018 (has links)
La pile à combustible (PàC) est un dispositif qui transforme l'énergie chimique en énergie électrique. Ce dispositif nécessite un certain nombre d’auxiliaires pour son fonctionnement. Afin d'assurer des performances en termes de sécurité, de fiabilité et de durée de vie de la PàC, des systèmes de diagnostic et de commande adéquats sont indispensables. Ainsi, cette thèse est une contribution au problème du diagnostic de défauts et à la commande de la PàC de type PEM. Le premier volet de ce travail est consacré au développement de méthodes de diagnostic appliquées à la PàC. Pour ce faire, deux approches ont été proposées. La première concerne la synthèse d’un filtre H-/H∞ permettant la détection de défauts capteurs et actionneurs tout en assurant un niveau de robustesse vis-à-vis d'éventuelles perturbations. En tenant compte des caractéristiques du système de la PàC, les conditions d'existence et de stabilité du filtre sont données sous la forme de LMI. La seconde approche traite le problème de la détection des défauts paramétriques. Pour cet objectif, un observateur adaptatif a été proposé, ce dernier permet d'estimer la valeur du paramètre susceptible de présenter une défaillance. Cette méthode donne la possibilité d'estimer simultanément les défauts paramétriques et les états non mesurés du système. Le deuxième volet de la thèse est dédié à la commande du système PàC. Le but est de synthétiser une loi de commande par rétroaction qui permet de répondre à la sollicitation de la charge tout en respectant une contrainte de fonctionnement nominal de la PàC. La synthèse de cette loi de commande a été réalisée en prenant compte tout le caractère non linéaire du système / The fuel cell is a device that transforms the chemical energy in electricity. This device requires some auxiliaries for its operation. In order to ensure the performances in terms of security, reliability and life cycle of the fuel cell, adequate diagnostic and control systems are indispensables. This thesis is a contribution to the problem of faults diagnosis and control of PEM Fuel Cell. The first part of this work is dedicated to the development of diagnostic methods applied to the fuel cell. To do this, two approaches are proposed. The first one concerns the synthesis of a H-/H∞ filter allowing the sensors and actuators faults detection while ensuring a level of robustness towards disturbances. Taking into account the fuel cell system characteristics, the conditions for existence and stability of the filter are given in the form of Linear Matrix Inequalities (LMI). The second approach deals with the problem of parametric faults detection. For this purpose, an adaptive observer has been proposed, which makes it possible to estimate the value of the parameter likely to exhibit a failure. This method gives the possibility of simultaneously estimating the parametric faults and the unmeasured states of the system. The second part of the thesis is dedicated to the control of the fuel cell system. The purpose is to synthesize a feedback control law that allows to answer the load request while respecting a nominal operating constraint of the fuel cell. Such a functioning allows to have a better efficiency while preserving the state of health of the fuel cell. The control law is obtained by using the original nonlinear model and without any kind of linearization
56

Estudo do desempenho e degradação de catalisadores e membranas em células a combustível de eletrólito polimérico / A performance and degradation study of catalysts and membranes for proton exchange fuel cell

Fernandes, Adriano Caldeira 05 November 2009 (has links)
Neste trabalho, a reação de redução de oxigênio (RRO) foi estudada em catalisadores nano-particulados de Pt e ligas de PtM (M = Co, Cr, Fe e Ni) suportados em carbono, preparados localmente por método de impregnação, para aplicação em células a combustível de eletrólito polimérico (CCEP). A caracterização física destes materiais foi realizada através das técnicas de energia dispersiva de raios x (EDS), difração de raios x (DRX), absorção de raios x (XAS) e microscopia eletrônica de varredura e transmissão. Os testes eletroquímicos dos catalisadores foram realizados com o uso de voltametria cíclica, medidas de polarização em estado estacionário e espectroscopia de impedância eletroquímica. Estes estudos foram conduzidos em meia-célula usando eletrodos de disco/anel rotatórios e tendo ácido sulfúrico (0,5 mol L-1) como eletrólito e em células unitárias CCEP contendo membranas de Nafion® 212 (N212) e Nafion® 112 (N112), alimentadas com H2 no ânodo e O2/ar no cátodo, em diferentes temperaturas e pressões. Finalmente, foram também realizados estudos de durabilidade tanto dos catalisadores como das membranas poliméricas, os quais foram submetidos a procedimentos de degradação acelerada (PDA). Os resultados dos estudos em meia-célula mostraram que os catalisadores bimetálicos (PtM) são menos ativos cataliticamente para a RRO comparados à Pt pura, fatos que não se confirmaram nos testes em células unitárias. Por outro lado, após a aplicação do PDA os catalisadores apresentaram mudanças significativas em suas propriedades estruturais e eletrônicas que levaram à diminuição da atividade frente a RRO. No geral as células a combustível com N212 apresentaram melhor desempenho do que aquelas com N112, quando operadas com ar no cátodo, porém os estudos confirmaram que a degradação da membrana leva à redução do desempenho devido o aumento do cruzamento de gás, principalmente de H2. / In this work, the oxygen reduction reaction (ORR) was studied on nano-particulated Pt and PtM (M = Co, Cr, Fe e Ni) alloy electrocatalysts supported on carbon, prepared by an impregnation method, for utilization on polymer electrolyte fuel cell (PEFC). The physical properties of the materials have been investigated by energy dispersive X-ray analyses (EDX), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and scanning and transmission electron microscopy. The electrochemical investigations were carried out using cyclic voltammetry, steady state polarization measurements and electrochemical impedance spectroscopy. Studies were conducted on half-cells with rotating ring-disk electrodes having 0.5 mol L-1 H2SO4 as electrolyte and on PEFC single cells built with Nafion® 212 (N212) and Nafion® 112 (N112) membranes, feed with H2 and O2/air at several temperatures and pressures. Finally, durability studies of either, the catalysts and membranes, were carried out, after they were submitted to accelerated degradation procedures (ADP). The half-cell results indicated a lower activity for the ORR of the bimetallic electrocatalysts, compared to pure Pt, but this was not confirmed by the single cell tests. On the other hand, after the ADP, the catalysts showed significant changes on the morphological and electronic properties, which leaded to a reduction of the activity for the ORR. The single cells with N212 presented higher performance than those with N112, when operating with air supplied cathodes, but the results confirmed that the degradation of the membranes leads to a reduction of the fuel cell performance by increasing the gas crossover, mainly of H2.
57

Artificial neural network control strategies for fuel cell hybrid system

Oheda, Hakim January 2013 (has links)
The greening of air transport is the driver for developing technologies to reduce the environmental impact of aviation with the aim of halving the amount of carbon dioxide (COଶ) emitted by air transport, cutting specific emissions of nitrogen oxides (NO୶) by 80% and halving perceived noise by the year 2020. Fuel Cells (FC) play an important role in the new power generation field as inherently clean, efficient and reliable source of power especially when comparing with the traditional fossil-fuel based technologies. The project investigates the feasibility of using an electric hybrid system consisting of a fuel cell and battery to power a small model aircraft (PiperCub J3). In order to meet the desired power requirements at different phases of flight efficiently, a simulation model of the complete system was first developed, consisting of a Proton Exchange Membrane hybrid fuel cell system, 6DoF aircraft model and neural network based controller. The system was then integrated in one simulation environment to run in real-time and finally was also tested in hardware-in-the-loop with real-time control. The control strategy developed is based on a neural network model identification technique; specifically Model Reference Control (MRC), since neural network is well suited to nonlinear systems. To meet the power demands at different phases of flight, the controller controls the battery current and rate of charging/discharging. Three case studies were used to validate and assess the performance of the hybrid system: battery fully charged (high SOC), worst case scenario and taking into account the external factors such as wind speeds and wind direction. In addition, the performance of the Artificial Neural Network Controller was compared to that of a Fuzzy Logic controller. In all cases the fuel cell act as the main power source for the PiperCub J3 aircraft. The tests were carried-out in both simulation and hardware-in-the-loop.
58

Artificial neural network control strategies for fuel cell hybrid system

Oheda, Hakim 05 1900 (has links)
The greening of air transport is the driver for developing technologies to reduce the environmental impact of aviation with the aim of halving the amount of carbon dioxide (COଶ) emitted by air transport, cutting specific emissions of nitrogen oxides (NO୶) by 80% and halving perceived noise by the year 2020. Fuel Cells (FC) play an important role in the new power generation field as inherently clean, efficient and reliable source of power especially when comparing with the traditional fossil-fuel based technologies. The project investigates the feasibility of using an electric hybrid system consisting of a fuel cell and battery to power a small model aircraft (PiperCub J3). In order to meet the desired power requirements at different phases of flight efficiently, a simulation model of the complete system was first developed, consisting of a Proton Exchange Membrane hybrid fuel cell system, 6DoF aircraft model and neural network based controller. The system was then integrated in one simulation environment to run in real-time and finally was also tested in hardware-in-the-loop with real-time control. The control strategy developed is based on a neural network model identification technique; specifically Model Reference Control (MRC), since neural network is well suited to nonlinear systems. To meet the power demands at different phases of flight, the controller controls the battery current and rate of charging/discharging. Three case studies were used to validate and assess the performance of the hybrid system: battery fully charged (high SOC), worst case scenario and taking into account the external factors such as wind speeds and wind direction. In addition, the performance of the Artificial Neural Network Controller was compared to that of a Fuzzy Logic controller. In all cases the fuel cell act as the main power source for the PiperCub J3 aircraft. The tests were carried-out in both simulation and hardware-in-the-loop.
59

Experimental Measurement of Effective Diffusion Coefficient in Gas Diffusion Layer/Microporous Layer in PEM Fuel Cells

Chan, Carl 25 August 2011 (has links)
Accuracy in the effective diffusion coefficient of the gas diffusion layer (GDL)/microporous layer (MPL) is important to accurately predict the mass transport limitations for high current density operation of polymer electrolyte membrane (PEM) fuel cells. All the previous studies regarding mass transport limitations were limited to pure GDLs, and experimental analysis of the impact of the MPL on the overall diffusion in the porous GDL is still lacking. The MPL is known to provide beneficial water management properties at high current operating conditions of PEM fuel cells but its small pore sizes become a resistance in the diffusion path for mass transport to the catalyst layer. A modified Loschmidt cell with an oxygen-nitrogen mixture is used in this work to determine the effect of MPL on the effective diffusion coefficients. It is found that Knudsen effects play a dominant role in the diffusion through the MPL where pore diameters are less than 1 μm. Experimental results show that the effective diffusion coefficient of the MPL is only about 21% that of its GDL substrate and Knudsen diffusion accounts for 80% of the effective diffusion coefficient of the GDL with MPL measured in this study. No existing correlations can correlate the effective diffusion coefficient with significant Knudsen contribution.
60

Design of an Improved Moisture Separator in a Turbocharger System for Fuel Cells

Aspinwall, Jacob Raleigh 12 May 2004 (has links)
Moisture recovery is important in the operation of many fuel cell systems, especially proton exchange membrane (PEM) fuel cells. The exhaust of a PEM fuel cell is a moderate temperature, pressurized humid air stream. A system that recovers liquid water condensate from the pressurized humid exhaust stream of a PEM fuel cell would markedly increase the effectiveness of such a system. The recovered water could be used to hydrate the fuel cell membrane, and it could supply a hydrocarbon reformer used for generating hydrogen. This project investigated and documented moisture recovery from the simulated humid exhaust stream of a 25 kW fuel cell with an improved axial flow separator. An axial flow centrifugal separator design was chosen as the best candidate due to its high efficiency and low pressure drop and a prototype was designed and constructed. The separator was then integrated into an experimental test system. First, the stream was simulated by heating compressed air and then humidifying it with superheated steam. Then, after expanding through the turbine section of an automotive turbocharger, the humid stream was passed through the moisture separator where liquid water condensate was removed from the flow. Results are presented for varying turbine inlet conditions at three separate separation lengths. It is shown that the separation efficiency for the improved design was 40% higher and the pressure drop was only 1/3 that of the conventional separator.

Page generated in 0.072 seconds