• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 27
  • 22
  • 13
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 207
  • 65
  • 49
  • 46
  • 22
  • 20
  • 19
  • 18
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

O fenômeno dos movimentos pendulares dos trabalhadores intermunicipais entre cidades de porte médio: o caso de Cascavel e Toledo (PR). / The phenomenon of the pendulum movements of the commuters between towns of medium size: the case of Cascavel and Toledo (PR).

Stamm, Cristiano 15 December 2005 (has links)
Made available in DSpace on 2017-07-10T18:33:37Z (GMT). No. of bitstreams: 1 Dissertacao Cristiano Stamm p1.pdf: 1243133 bytes, checksum: 2b907508917bf358c617ed713dd9190f (MD5) Previous issue date: 2005-12-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The central objective of this work was to examine the phenomenon of pendulum movements between the medium size towns of Cascavel and Toledo, located in the West Mesoregion of the State of Paraná. The importance of studying the phenomenon of pendulum movements, specifically of the commuters, is due to the diffusion of the urban tendencies in the great centers and for the great potential that the phenomenon has in spreading out across the national territory and, fundamentally as a result of the growth of the medium towns in the country. First, the theoretical approaches about the urban subject were collected, mainly of the nets and urban hierarchies, as they are fundamental for the function of the urban movements. After that, some considerations about the internal migrations and pendulum movements were made. The methodological research prioritized two points: the analysis of literature and field research developed with the metropolitan bus passengers. For this purpose, it was adopted as criterion for the medium towns, the municipal districts with a population between one thousand to five thousand inhabitants in Brazil. In the results, a socioeconomic profile of the population that uses the metropolitan bus as means of transportation for the commuting between the towns of Cascavel and Toledo was drawn. It was possible to observe that 70,33% of the interviewees was employed and that the great majority (58,75%) had upper or secondary education levels. Another evidence was that 54.67% of the interviewed ones received up to 4 minimum wages as familiar income. Thus, the information related to the commuters to Cascavel-Toledo and Toledo-Cascavel were analyzed, indicating characteristics such as sex, age, education, wage, income, sector of occupation, expended average time in commuting and, also, the frequency of these movements. After the analysis of the commuters profile, it was observed that they presented economic factors, such as motivation, to commute and social factors as reasons for not to migrate to the cities they were working. Therefore, such data has evidenced some particular trends and specific uses of the metropolitan bus as an inter-municipal movement. It was confirmed the hypothesis that a flow of commuters between the medium provincial towns of Cascavel and Toledo, such as those presented by the urban trends in the great centers and in the metropolitan regions are occurring in small country towns. / O objetivo central desse trabalho foi examinar o fenômeno dos movimentos pendulares dos trabalhadores intermunicipais entre as cidades interioranas de porte médio de Cascavel e de Toledo, localizadas na Mesorregião Oeste do Estado do Paraná. A importância de se estudar o fenômeno dos movimentos pendulares, especificamente dos trabalhadores, se faz devido à difusão das tendências urbanas ocorridas nos grandes centros e pelo grande potencial que esse fenômeno tem em se alastrar pelo território nacional e, fundamentalmente, em razão do crescimento das cidades de porte médio no interior do país. Preliminarmente, foram levantadas as abordagens teóricas sobre a questão urbana, principalmente das redes e hierarquias urbanas, pois estas são fundamentais para a funcionabilidade dos movimentos urbanos. Logo após, foram feitas algumas considerações sobre as migrações internas e movimentos pendulares. A pesquisa metodológica priorizou dois pontos, os quais são: a análise da literatura disponível e a pesquisa de campo com os usuários do ônibus metropolitano na região estudada. Para tanto, se adotou como critério para as cidades de porte médio os municípios com uma população entre 100 mil e 500 mil habitantes no Brasil. Nos resultados foi traçado um perfil socioeconômico da população que utiliza o ônibus metropolitano como meio de transporte para o deslocamento intermunicipal entre as cidades de Cascavel e Toledo. Dessa forma, observou-se que 70,33% dos entrevistados estavam empregados e que a grande maioria (58,75%) apresentavam ter o ensino médio completo ou superior, como nível de escolaridade. Outra evidencia foi de que 54,67% dos entrevistados tinham uma faixa de até 4 salários mínimos como renda familiar. Em seguida foram analisadas as informações relacionadas aos trabalhadores pendulares nos sentidos Cascavel-Toledo e Toledo-Cascavel, indicando características, como sexo, idade, escolaridade, salário, renda salarial, setor de ocupação, tempo médio despendido no movimento pendular e, também, a freqüência desses movimentos. Após o perfil dos trabalhadores pendulares observou-se que esses apresentaram fatores econômicos como motivação para realizar tais movimentos e fatores sociais como motivos para não migrarem para as cidades que estavam trabalhando. Dessa forma, tais dados evidenciaram algumas tendências e particulares daqueles que utilizam o ônibus metropolitano como deslocamento intermunicipal. Confirmou-se a hipótese do trabalho de que está ocorrendo um fluxo de trabalhadores pendulares entre as cidades interioranas de porte médio de Cascavel e de Toledo, de tal forma que as tendências urbanas apresentadas nos grandes centros e nas regiões metropolitanas estão ocorrendo em cidades de menor porte populacional no interior do país.
182

Investigations on Dynamics and Control of a Rimless Wheel Based 2D Dynamics Walker using Pulsed Torque Actuation

Patnaik, Lalit January 2014 (has links) (PDF)
Wheeled systems are energy efficient on prepared surfaces like roads and tracks. Legged systems are capable of traversing different terrains but can be lossy. At low speeds and on off-road surfaces, legged systems using dynamic walking can be energy efficient. Towards this objective, the dynamics of the walker needs to be modelled and controlled. In addition, the braking and ground impact losses need to be minimized. This thesis presents analysis and experiments on the dynamics and control of a rimless-spoked-wheel based mobile robot (Chatur ∗) that belongs to a category between wheeled and legged systems. This rolling rimless wheel is effectively a 2D dynamic walker that serves as a platform for investigating the dynamics and energetics of inverted pendulum walking with constant step angle. A pulsed actuation torque is proposed for the system resulting in four torque regimes defined by the ratio of energy losses to available actuator torque. Five physical constraints that impose fundamental limits on the choice of operating points of a generic inverted pendulum walker are expounded and a method for locating optimal operating points is discussed. Chatur’s hardware design is elaborated and a control topology is proposed for pulsed actuation of the dual brushless dc (BLDC) motor driven platform with wheel synchronization. Various actuator torque profiles can be used to achieve dynamic ‘walking’ in a hub-actuated rimless wheel. The proposed pulsed actuation torque gives rise to four torque regimes that achieve sustained walking and a fifth regime where the walker keeps slowing down with each step. The regimes can be identified based on the fraction of stance phase for which the actuator is energized. Theoretical analysis and experimental results are presented. A simple closed-form analytical solution, using hyperbolic functions, is proposed for the stance phase inverted pendulum dynamics considering planar motion. Ground impacts are assumed to cause abrupt drop in velocity. A constant braking torque that lumps together the effect of several loss phenomena is also considered. Based on whether the CoM is rising or falling and whether or not there is an actuating torque, a stance phase can have four types of sub-phases — actuated rise, unactuated rise, actuated fall, unactuated fall. These are concatenated in four different ways to form repeating cycles yielding the four regimes. The experimental set-up is a fixed step-angle walker constructed using two synchronized adjacent rimless wheels independently actuated at the hub. Varying the magnitude and duty ratio of the torque pulse, the four proposed regimes are experimentally shown. The mechanical power consumption and cost of transport are computed from measured motor currents for different average forward speeds. Videos of the walks are also taken. The space of operating points for an inverted pendulum based bipedal dynamic walker in terms of constraints and optimality is investigated. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v0) and step angle (φm) chosen for a given walk. Not all operating points lead to a realizable steady-state gait. Using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the valid region of operation of the walker in the v0–φm plane. Within this allowable region, sub-regions that result in various regimes of walking are identified. A given average forward velocity vx,avg can be achieved by several combinations of v0 and φm. Only one of these combinations results in the minimum mechanical power consumption and can be considered the opti-mum operating point for the given vx,avg. A method is proposed for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various vx,avg, a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity. Thus, choosing the right step angle and keeping it fixed over a broad range of speeds could lead to an inverted pendulum walker that is close to optimal from a mechanical energy perspective. The complete hardware design for Chatur and the caveats associated with reliable performance of the mechanical and electrical subsystems are elaborated. In order to en-sure lateral stability, the system uses two contralateral wheels each driven by a separate BLDC hub motor. From a motor drive perspective, the mechanical load belongs to a unique class of dynamic loads whose reflected torque has a characteristic cyclic varia-tion that repeats several times within a mechanical revolution. The proposed control topology has two hierarchical levels, an inner loop for torque control of BLDC motor implemented using a standard proportional-integral controller, and an outer loop for torque reference generation that uses the information on the ground impact instants and the motor position feedback. Ground impacts of the spokes are detected by an accelerometer to initiate the application of torque. The torque pulse magnitude can be set internally or by a manual operator via radio control. The pulse duration is programmable and enables attainment of various torque regimes at different steady state speeds. The wheels are synchronized so that corresponding spokes on both wheels move in unison. This is achieved by including a wheel synchronization loop that compensates for any lag between the wheels. Lag is detected based on number of sector changes in the hall-effect position sensor data received from both motors. An improved BLDC motor drive is developed wherein non-commutating current feedback is used to reduce current spikes during sector transitions. Experimental waveforms for controller validation are shown.
183

Matematické modelování pomocí diferenciálních rovnic / Mathematical modelling with differential equations

Béreš, Lukáš January 2017 (has links)
Diplomová práce je zaměřena na problematiku nelineárních diferenciálních rovnic. Obsahuje věty důležité k určení chování nelineárního systému pouze za pomoci zlinearizovaného systému, což je následně ukázáno na rovnici matematického kyvadla. Dále se práce zabývá problematikou diferenciálních rovnic se zpoždéním. Pomocí těchto rovnic je možné přesněji popsat některé reálné systémy, především systémy, ve kterých se vyskytují časové prodlevy. Zpoždění ale komplikuje řešitelnost těchto rovnic, což je ukázáno na zjednodušené rovnici portálového jeřábu. Následně je zkoumána oscilace lineární rovnice s nekonstantním zpožděním a nalezení podmínek pro koeficienty rovnice zaručující oscilačnost každého řešení.
184

Návrh a realizace demonstračního modelu dvojítého kyvadla / Design and implementation of demonstration model "double inverted pendulum"

Slabý, Vít January 2018 (has links)
This thesis describes the process of rebuilding an experimental model of a single pendulum on a cart into the double pendulum on a cart. The control algorithm in MATLAB/Simulink environment for stabilization of the pendulum in the inverse position is designed. For this purpose, LQR state feedback control was implemented. Also method for swinging the pendulum into inverse position from stable state (swing-up) was designed. Feedforward method was utilised for swing-up control. In the thesis, functionality of these algorithms is shown.
185

Realizace inverzního kyvadla typu Cubli / Inverted pendulum realization based on Cubli

Ježek, Michal January 2019 (has links)
This master thesis deals with the development and construction of the inverted pendulum, inspired by the Cubli project. The objective is to develop and design an inverted pendulum, in the shape of one side of the cube balancing at one of its corner and for balancing is used the flywheel. For its design 3D printing is used to the maximum extent and as the electronic parts commonly available components at an affordable price are used. The design of the construction and the components allow the construction of a complete cube, without the need of further development or fundamental changes in the design of the model. For the calculations and the design of the controller the Matlab / Simulink software was used. As the controller algorithm the LQR algorithm is used with added integral feedback, to minimize control error. The 3D models of the single parts are created with FreeCAD software and printed on a 3D Prusa i3 MK2S printer.
186

Návrh a řízení modelu laboratorního dvojitého kyvadla / Design and control of laboratory double pendulum model

Kirchner, Tomáš January 2020 (has links)
Improvement of the current double inverted pendulum model on a cart as well as a new LQG control and swing-up realization are the main goal of this thesis. Movement of the cart is driven by DC motor and gear belt mechanism. At first the control algorithms were simulated in Simulink program and then also implemented into the real system with MF624 card.
187

Modelování tlumících zařízení v interakci s konstrukcí / Modelling of damping devices in interaction with a structure

Kalina, Martin January 2013 (has links)
The aim of my master’s thesis was to create models of the damping device and observing their behavior in interaction with the structure. First was the construction separately modeled with Java application named FyDiK2D like a model with one degree of freedom. Model of construction takes form like a high, thin rod with full circular cross section. The lower part was restrained into the subsoil. The design was to verify the correct functionality of the model by comparing the analytical and numerical solutions. For capturing the precise behavior of the structure was converted to a multi-stage model. Then the pendulum damper was applied on this construction and found amplitude lies in highest point of multi-stage model. He was then replaced by tuned mass damper. By comparing these amplitudes from both dampers was found which kind of damper is efficient for multi-stage model.
188

Návrh vestavěného systému pro řízení výukového modelu rotačního kyvadla / Design of embedded system for control of educational model of rotary pendulum

Jajtner, Jan January 2015 (has links)
The basic aim of this work is to improve existing model of rotational inverted pendulum by adding new mechanical features, implement the control algorithm to dsPIC microcontroller and develop related control electronics thus extending the functionality of current model while making it more compact. The work contains derivation of dynamic equations both by means of analytical methods and multi-body formalism of SimMechanics. These are used to design a state controller stabilizing the pendulum in inverse position. In addition, parameters of the system are being estimated experimentally. Swing-up controller is developed to drive the pendulum to unstable position. Various state estimators are added to controller to improve the control process while comparing their overall performance. The last point is devoted to development of superior state-automaton designed to switch between different regulating modes including fail-detection algorithms providing smooth operation of the model.
189

Neuro-fuzzy systémy / Neural-Fuzzy Systems

Dalecký, Štěpán January 2014 (has links)
The thesis deals with artificial neural networks theory. Subsequently, fuzzy sets are being described and fuzzy logic is explained. The hybrid neuro-fuzzy system stemming from ANFIS system is designed on the basis of artificial neural networks, fuzzy sets and fuzzy logic. The upper-mentioned systems' functionality has been demonstrated on an inverted pendulum controlling problem. The three controllers have been designed for the controlling needs - the first one is on the basis of artificial neural networks, the second is a fuzzy one, and the third is based on ANFIS system.  The thesis is aimed at comparing the described systems, which the controllers have been designed on the basis of, and evaluating the hybrid neuro-fuzzy system ANFIS contribution in comparison with particular theory solutions. Finally, some experiments with the systems are demonstrated and findings are assessed.
190

Multi-objective optimization and performance evaluation of active, semi-active and passive suspensions for forestry machines / Flermålsoptimering och utvärdering av prestandan hos aktiva, semi-aktiva och passiva fjädringssystem för skogsmaskiner

Baez, Federico January 2014 (has links)
The development of forestry machines is currently heading towards new solutions that reduce their impact on the environment and in particular on the soft forest soil in which the machines operate. The terrain conditions that forestry machines encounter in their regular duties can be very rough, and if the vehicle-ground interaction is not properly controlled cumulative damage can progressively aggravate these conditions and potentially render a route or a zone impracticable, apart from causing a detrimental effect in the forest environment. In addition, new machine solutions must be considerably less damaging, both physically and mentally, to operators. There are certain imposed limits to the whole body vibrations to which industrial workers are exposed daily, which are very hard to fulfil in the context of wood harvesting operations with the current technological state of the machines. Chassis-suspended solutions in the market of forestry vehicles are practically inexistent. Multiple wheeled tracks and/or bogies are current solutions that improve dynamic performance and ground contact area of forestry vehicles, but they do not include suspension elements. Cab and seat suspensions are also used to reduce whole body vibrations, but they are only effective up to a certain degree, due to their relatively short stroke length and directional limitations. The implementation of chassis suspensions in forestry machines is therefore a very interesting open area of research in forestry technology. In this context the XT28, a forwarder prototype with active pendulum arm suspension, is currently being developed by Extractor AB in collaboration with Skogforsk; the Forestry Research Institute of Sweden. The present project focuses in analysis and comparison of the performance that active, semi-active and passive suspension systems with pendulum arm architecture would present, by studying their application in the XT28 machine. These systems have the potential to significantly improve forestry vehicle performance in terms of terrain friendliness and whole body vibrations over an unsuspended system. The task is carried out with the help of Multi-Body Dynamics simulation software along with other simulation and computational tools. Additionally, a general method to optimize and analyse forestry vehicle suspension performance is proposed and applied to the case of the XT28, which provides a fair and standardized way to compare the performance of the different suspensions. Keywords: Forestry machine, suspension, multi-objective optimization, forwarder, pendulum arm, active, semi-active, passive, XT28, Multibody Dynamics, soil-friendly, off-road. / Utvecklingen av skogsmaskiner är för närvarande på väg mot nya lösningar som minskar deras påverkan på miljön och i synnerhet på mjuk skogsmark. Skogsmaskinerna verkar ofta i mycket oländig och ojämn terräng, och om interaktionen mellan fordon och mark är alltför okontrollerad, så kan interaktionen ge upphov till kumulativa markskador som gradvis förvärras efter flera passager och eventuellt göra en rutt eller en zon oframkomlig, bortsett från att de orsaka skador på skogsmiljön. Dessutom måste nya maskinlösningar vara skonsammare, både fysiskt och mentalt, för förarna. Det finns nya gränser för maximala helkroppsvibrationer och maximala dagliga vibrationsdoser, som är mycket svåra att uppfylla vid skogsavverkning med dagens skogsmaskinsteknik. Chassidämpade lösningar är praktiskt taget obefintliga på dagens skogsmaskiner. Band och/eller boggier är aktuella lösningar som i viss mån förbättrar maskinernas dynamisk interaktion med marken, men de innehåller inga dämpelement, utan det är enbart däckens flexibilitet som ger maskinen en dämpfunktion. Hytt-och stolsdämpning används också för att minska helkroppsvibrationer, men de är endast effektiva till en viss grad, på grund av deras relativt korta slaglängd och riktningsbegränsningar. Införande av chassidämpning för skogsmaskiner är därför ett mycket intressant skogstekniskt forskningsområde. För närvarande utvecklas en skotare med aktivt dämpade pendelarmar av Extractor AB i samarbete med Skogforsk. Maskinen går under beteckningen XT28. Detta projekt fokuserar på att analysera och jämföra prestandan hos aktivt, semi-aktivt och passivt dämpade pendelarmlösningar, genom att implementera dessa i XT28-maskinen. Dessa system har potential att avsevärt förbättra skogsmaskinernas framkomlighet i oländig terräng och att minska helkroppsvibrationerna, jämfört med ofjädrade system. Uppgiften genomförs med hjälp av dynamiksimuleringsprogram i kombination med andra simulerings- och beräkningsverktyg. Dessutom föreslås en generell metodik för att optimera och analysera prestandan hos chassidämpningslösningar för skogsmaskiner. Metodiken tillämpas sedan på en XT28, som då, i detta fall, får fungera som en demonstrator för att jämföra prestandan hos olika chassidämplösningar. Nyckelord: Skogsmaskin, fjädring, optimering, skotare, pendelarm, aktiv, semi-aktiv, passiv, XT28, flerkroppsdynamik, markvänlig, off-road.

Page generated in 0.0437 seconds