• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur les grands clusters en percolation

Couronné, Olivier 09 December 2004 (has links) (PDF)
Cette thèse est consacrée à l'étude des grands clusters en percolation et se compose de quatre articles distincts. Les différents modèles étudiés sont la percolation Bernoulli, la percolation FK et la percolation orientée. Les idées clés sont la renormalisation, les grandes déviations, les inégalités FKG et BK, les proprietés de mélange. Nous prouvons un principe de grandes déviations pour les clusters en régime sous-critique de la percolation Bernoulli. Nous utilisons l'inégalité FKG pour démontrer la borne inférieure du PGD. La borne supérieure est obtenue à l'aide de l'inégalité BK combinée avec des squelettes, les squelettes étant des sortes de lignes brisées approximant les clusters. Concernant la FK percolation en régime sur-critique, nous établissons des estimés d'ordre surfacique pour la densité du cluster maximal dans une boîte en dimension deux. Nous utilisons la renormalisation et comparons un processus sur des blocs avec un processus de percolation par site dont le paramètre de rétention est proche de un. Pour toutes les dimensions, nous prouvons que les grands clusters finis de la percolation FK sont distribués dans l'espace comme un processus de Poisson. La preuve repose sur la méthode Chen-Stein et fait appel à des propriétés de mélange comme la ratio weak mixing property. Nous établissons un principe de grandes déviations surfaciques dans le régime sur-critique du modèle orienté. Le schéma de la preuve est similaire à celui du cas non-orienté, mais des difficultés surgissent malgré l'aspect Markovien du réseau orienté. De nouveaux estimés blocs sont donnés, qui décrivent le comportement du processus orienté. Nous obtenons également la décroissance exponentielle des connectivités en dehors du cône de percolation, qui représente la forme typique d'un cluster infini.
2

Planarité et Localité en Percolation

Tassion, Vincent 30 June 2014 (has links) (PDF)
Cette thèse s'inscrit dans l'étude mathématique de la percolation, qui regroupe une famille de modèles présentant une transition de phase. Des avancées majeures au cours des quinze dernières années, notamment l'invention du SLE et la preuve de l'invariance conforme de la percolation de Bernoulli critique, nous permettent aujourd'hui d'avoir une image très complète de la percolation de Bernoulli sur le réseau triangulaire. Cependant, de nombreuses questions demeurent ouvertes, et ont motivé notre travail.La première d'entre elle est l'universalité de la percolation plane, qui affirme que les propriétés macroscopiques de la percolation plane critique ne devraient pas dépendre du réseau sous-jacent à sa définition. Nous montrons, dans le cadre de la percolation Divide and Color, un résultat qui va dans le sens de cette universalité et identifions, dans ce contexte, des phénomènes macroscopiques indépendants du réseau microscopique. Une version plus faible d'universalité est donnée par la théorie de Russo-Seymour-Welsh (RSW), et sa validité est connue pour la percolation de Bernoulli (sans dépendance) sur les réseaux plans suffisamment symétriques. Nous étudions de nouveaux arguments de type RSW pour des modèles de percolation avec dépendance. La deuxième question que nous avons abordée est celle de l'absence d'une composante connexe ouverte infinie au point critique, une question importante du point de vue physique, puisqu'elle traduit la continuité de la transition de phase. Dans deux travaux en collaboration avec Hugo Duminil-Copin et Vladas Sidoravicius, nous montrons que la transition de phase est continue pour la percolation de Bernoulli sur le graphe Z^2x{0,...,k}, et pour la percolation FK sur le réseau carré avec paramètre q inférieur ou égal à 4. Enfin, la dernière question qui nous a guidés est la localité du point critique : la donnée des boules de grands rayons d'un graphe suffit-elle à identifier avec une bonne précision la valeur du point critique? Dans un travail en collaboration avec Sébastien Martineau, nous répondons de manière affirmative à cette question dans le cadre des graphes de Cayley de groupes abéliens.
3

Planarité et Localité en Percolation / Planarity and locality in percolation theory

Tassion, Vincent 30 June 2014 (has links)
Cette thèse s'inscrit dans l'étude mathématique de la percolation, qui regroupe une famille de modèles présentant une transition de phase. Des avancées majeures au cours des quinze dernières années, notamment l'invention du SLE et la preuve de l'invariance conforme de la percolation de Bernoulli critique, nous permettent aujourd'hui d'avoir une image très complète de la percolation de Bernoulli sur le réseau triangulaire. Cependant, de nombreuses questions demeurent ouvertes, et ont motivé notre travail.La première d'entre elle est l'universalité de la percolation plane, qui affirme que les propriétés macroscopiques de la percolation plane critique ne devraient pas dépendre du réseau sous-jacent à sa définition. Nous montrons, dans le cadre de la percolation Divide and Color, un résultat qui va dans le sens de cette universalité et identifions, dans ce contexte, des phénomènes macroscopiques indépendants du réseau microscopique. Une version plus faible d'universalité est donnée par la théorie de Russo-Seymour-Welsh (RSW), et sa validité est connue pour la percolation de Bernoulli (sans dépendance) sur les réseaux plans suffisamment symétriques. Nous étudions de nouveaux arguments de type RSW pour des modèles de percolation avec dépendance. La deuxième question que nous avons abordée est celle de l'absence d'une composante connexe ouverte infinie au point critique, une question importante du point de vue physique, puisqu'elle traduit la continuité de la transition de phase. Dans deux travaux en collaboration avec Hugo Duminil-Copin et Vladas Sidoravicius, nous montrons que la transition de phase est continue pour la percolation de Bernoulli sur le graphe Z^2x{0,...,k}, et pour la percolation FK sur le réseau carré avec paramètre q inférieur ou égal à 4. Enfin, la dernière question qui nous a guidés est la localité du point critique : la donnée des boules de grands rayons d'un graphe suffit-elle à identifier avec une bonne précision la valeur du point critique? Dans un travail en collaboration avec Sébastien Martineau, nous répondons de manière affirmative à cette question dans le cadre des graphes de Cayley de groupes abéliens. / This thesis is part of the mathematical study of percolation theory, which includes a family of models with a phase transition. Major advances in the 2000s, including the invention of SLE and the proof of conformal invariance of critical Bernoulli percolation, provide us with a very complete picture of the Bernoulli percolation process on the triangular lattice. Fortunately, many questions remain open, and motivated our work.The first of these is the universality of planar percolation, which states that the macroscopic properties of critical planar percolation should not depend on the underlying graph. We study this question in the framework of Divide and Color percolation, and prove in this context a result that goes in the direction of universality. A weaker universality statement is given by the theory of Russo-Seymour-Welsh (RSW), which is known to hold for planar Bernoulli percolation (without dependence) on sufficiently symmetric graphs. We study new RSW-type arguments for percolation models with dependence.The second question is the absence of an infinite cluster at the critical point, an important question from a physical point of view, equivalent to the continuity of the phase transition. In two different joint works with Hugo Duminil-Copin and Vladas Sidoravicius, we show that the phase transition is continuous for Bernoulli percolation on the graph Z^2 x {0,...,k} and for FK percolation on the square lattice with parameter q smaller than or equal to 4.Finally, the last question that guided us is the locality of the critical point: is it possible to determine with good accuracy the critical value for Bernoulli percolation on a graph if we know only the balls with large radii? Jointly with Sébastien Martineau, we answer positively to this question in the framework of Cayley graphs of abelian groups.

Page generated in 0.1089 seconds