• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Funkční důsledky perinatální hypoxie-ischémie u potkana / Functional consequences of perinatal hypoxia-ischemia in rat

Nováková, Eva January 2019 (has links)
Title: Functional consequences of perinatal hypoxia-ischemia in rat Objectives: The aim of this diploma thesis is to design a set of behavioral tests which provide an effective assessment of motor and cognitive-behavioural deficits in adults rats after experimental hypoxic-ischemic insult during the perinatal period (P7). Supposed benefit is to establish a model of motor and cognitive-behavioural abilities of individuals after this procedure. Methods: The present thesis has a theoretical-empirical character. The practical part describes how the experiment was performed. 32 long Evans Rats were randomly devided into two groups: experimental group (HIE) and control group (Ctrl). The method to produce hypoxic-ischemic brain damage in the 7 day-old rats consisted of right common carotid ligation followed by systemic hypoxia by the inhalation of 8% oxygen and 92% nitrogen. The adult animals (55-75 days old) were tested by the following list of behavioral tests: Bar holding test, Rotarod test, Ladder rung walking test, Reaching test, Open field test and Morris water maze test. Sigma Plot and Microsoft Excel 2010 were the programs used for statistical analysis. Results: Results of Open field test, Ladder rung walking test and Morris water maze test confirmed that hypoxic-ischemic insult affects the...
12

The filamin A actin binding domain structure and function: implications for a gain-of-function mechanism for the otopalatodigital syndrome: a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand [Ph. D] EMBARGOED

Clark, Alice Rosemary January 2010 (has links)
Embargoed until 1 January 2011 / The filamin family act as scaffolding proteins associating with actin filmanents, acting through a highly conserved actin binding domain (ABD). The ABD of the filamins is homologous to that found in other F-actin binding proteins such as dystrophin. Mutations in the filamin A gene cause a wide range of disease symptoms in humans reflecting the diversity of the roles that filamin A has in cell structure and signalling pathways. The diseases fall into two separate phenotypic groups. Periventricular nodular heterotopia (PVNH) generally results from the complete loss of filamin A protein, and affects the central nervous system. The clinically separate otopalatodigital disorders (OPD) spectrum disorders are skeletal disorders and were hypothesised to be gain of function phenotype diseases. At the beginning of this work, there was very little structural data available for the human filamins, and none for the crucial highly conserved actin binding domain. This lack of structural data limited the interpretation of the biochemical and genetic data and constrained our understanding of the disease associated mutations that cluster in this domain. These studies aimed to provide insights into the structure and mechanism of actin binding domains, and thus provide a better understanding of the diseases caused when this domain is mutated. A secondary structural analysis and crystal structures of the wildtype and OPD2 associated mutant ABDs were obtained. The overall fold of the three proteins was equivalent as determined by circular dichroism spectroscopy and x-ray crystallography. The ABD from filamin A E254K showed 3.7 fold increased F-actin affinity, accompanied by a reduced thermostability (of 5.6 °C). Western blotting of OPD2, frontometaphyseal dysplasia (FMD) and PVNH patient fibroblast lysates showed similar levels of filamin A compared to the control cells. In addition the OPD and PVNH patient fibroblasts were able to adhere to fibronectin and migrate with an equivalent rate to control cells. Together these results have allowed correlations to be developed between structure, protein stability, actin affinity, cellular phenotype and the overall clinical phenotype. Showing that, at least in one example, OPD2 may be due to an increased actin affinity providing further evidence for a gain of function mechanism of OPD2.
13

The filamin A actin binding domain structure and function: implications for a gain-of-function mechanism for the otopalatodigital syndrome: a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand [Ph. D] EMBARGOED

Clark, Alice Rosemary January 2010 (has links)
Embargoed until 1 January 2011 / The filamin family act as scaffolding proteins associating with actin filmanents, acting through a highly conserved actin binding domain (ABD). The ABD of the filamins is homologous to that found in other F-actin binding proteins such as dystrophin. Mutations in the filamin A gene cause a wide range of disease symptoms in humans reflecting the diversity of the roles that filamin A has in cell structure and signalling pathways. The diseases fall into two separate phenotypic groups. Periventricular nodular heterotopia (PVNH) generally results from the complete loss of filamin A protein, and affects the central nervous system. The clinically separate otopalatodigital disorders (OPD) spectrum disorders are skeletal disorders and were hypothesised to be gain of function phenotype diseases. At the beginning of this work, there was very little structural data available for the human filamins, and none for the crucial highly conserved actin binding domain. This lack of structural data limited the interpretation of the biochemical and genetic data and constrained our understanding of the disease associated mutations that cluster in this domain. These studies aimed to provide insights into the structure and mechanism of actin binding domains, and thus provide a better understanding of the diseases caused when this domain is mutated. A secondary structural analysis and crystal structures of the wildtype and OPD2 associated mutant ABDs were obtained. The overall fold of the three proteins was equivalent as determined by circular dichroism spectroscopy and x-ray crystallography. The ABD from filamin A E254K showed 3.7 fold increased F-actin affinity, accompanied by a reduced thermostability (of 5.6 °C). Western blotting of OPD2, frontometaphyseal dysplasia (FMD) and PVNH patient fibroblast lysates showed similar levels of filamin A compared to the control cells. In addition the OPD and PVNH patient fibroblasts were able to adhere to fibronectin and migrate with an equivalent rate to control cells. Together these results have allowed correlations to be developed between structure, protein stability, actin affinity, cellular phenotype and the overall clinical phenotype. Showing that, at least in one example, OPD2 may be due to an increased actin affinity providing further evidence for a gain of function mechanism of OPD2.
14

The filamin A actin binding domain structure and function: implications for a gain-of-function mechanism for the otopalatodigital syndrome: a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand [Ph. D] EMBARGOED

Clark, Alice Rosemary January 2010 (has links)
Embargoed until 1 January 2011 / The filamin family act as scaffolding proteins associating with actin filmanents, acting through a highly conserved actin binding domain (ABD). The ABD of the filamins is homologous to that found in other F-actin binding proteins such as dystrophin. Mutations in the filamin A gene cause a wide range of disease symptoms in humans reflecting the diversity of the roles that filamin A has in cell structure and signalling pathways. The diseases fall into two separate phenotypic groups. Periventricular nodular heterotopia (PVNH) generally results from the complete loss of filamin A protein, and affects the central nervous system. The clinically separate otopalatodigital disorders (OPD) spectrum disorders are skeletal disorders and were hypothesised to be gain of function phenotype diseases. At the beginning of this work, there was very little structural data available for the human filamins, and none for the crucial highly conserved actin binding domain. This lack of structural data limited the interpretation of the biochemical and genetic data and constrained our understanding of the disease associated mutations that cluster in this domain. These studies aimed to provide insights into the structure and mechanism of actin binding domains, and thus provide a better understanding of the diseases caused when this domain is mutated. A secondary structural analysis and crystal structures of the wildtype and OPD2 associated mutant ABDs were obtained. The overall fold of the three proteins was equivalent as determined by circular dichroism spectroscopy and x-ray crystallography. The ABD from filamin A E254K showed 3.7 fold increased F-actin affinity, accompanied by a reduced thermostability (of 5.6 °C). Western blotting of OPD2, frontometaphyseal dysplasia (FMD) and PVNH patient fibroblast lysates showed similar levels of filamin A compared to the control cells. In addition the OPD and PVNH patient fibroblasts were able to adhere to fibronectin and migrate with an equivalent rate to control cells. Together these results have allowed correlations to be developed between structure, protein stability, actin affinity, cellular phenotype and the overall clinical phenotype. Showing that, at least in one example, OPD2 may be due to an increased actin affinity providing further evidence for a gain of function mechanism of OPD2.
15

The filamin A actin binding domain structure and function: implications for a gain-of-function mechanism for the otopalatodigital syndrome: a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand [Ph. D] EMBARGOED

Clark, Alice Rosemary January 2010 (has links)
Embargoed until 1 January 2011 / The filamin family act as scaffolding proteins associating with actin filmanents, acting through a highly conserved actin binding domain (ABD). The ABD of the filamins is homologous to that found in other F-actin binding proteins such as dystrophin. Mutations in the filamin A gene cause a wide range of disease symptoms in humans reflecting the diversity of the roles that filamin A has in cell structure and signalling pathways. The diseases fall into two separate phenotypic groups. Periventricular nodular heterotopia (PVNH) generally results from the complete loss of filamin A protein, and affects the central nervous system. The clinically separate otopalatodigital disorders (OPD) spectrum disorders are skeletal disorders and were hypothesised to be gain of function phenotype diseases. At the beginning of this work, there was very little structural data available for the human filamins, and none for the crucial highly conserved actin binding domain. This lack of structural data limited the interpretation of the biochemical and genetic data and constrained our understanding of the disease associated mutations that cluster in this domain. These studies aimed to provide insights into the structure and mechanism of actin binding domains, and thus provide a better understanding of the diseases caused when this domain is mutated. A secondary structural analysis and crystal structures of the wildtype and OPD2 associated mutant ABDs were obtained. The overall fold of the three proteins was equivalent as determined by circular dichroism spectroscopy and x-ray crystallography. The ABD from filamin A E254K showed 3.7 fold increased F-actin affinity, accompanied by a reduced thermostability (of 5.6 °C). Western blotting of OPD2, frontometaphyseal dysplasia (FMD) and PVNH patient fibroblast lysates showed similar levels of filamin A compared to the control cells. In addition the OPD and PVNH patient fibroblasts were able to adhere to fibronectin and migrate with an equivalent rate to control cells. Together these results have allowed correlations to be developed between structure, protein stability, actin affinity, cellular phenotype and the overall clinical phenotype. Showing that, at least in one example, OPD2 may be due to an increased actin affinity providing further evidence for a gain of function mechanism of OPD2.
16

The filamin A actin binding domain structure and function: implications for a gain-of-function mechanism for the otopalatodigital syndrome: a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand [Ph. D] EMBARGOED

Clark, Alice Rosemary January 2010 (has links)
Embargoed until 1 January 2011 / The filamin family act as scaffolding proteins associating with actin filmanents, acting through a highly conserved actin binding domain (ABD). The ABD of the filamins is homologous to that found in other F-actin binding proteins such as dystrophin. Mutations in the filamin A gene cause a wide range of disease symptoms in humans reflecting the diversity of the roles that filamin A has in cell structure and signalling pathways. The diseases fall into two separate phenotypic groups. Periventricular nodular heterotopia (PVNH) generally results from the complete loss of filamin A protein, and affects the central nervous system. The clinically separate otopalatodigital disorders (OPD) spectrum disorders are skeletal disorders and were hypothesised to be gain of function phenotype diseases. At the beginning of this work, there was very little structural data available for the human filamins, and none for the crucial highly conserved actin binding domain. This lack of structural data limited the interpretation of the biochemical and genetic data and constrained our understanding of the disease associated mutations that cluster in this domain. These studies aimed to provide insights into the structure and mechanism of actin binding domains, and thus provide a better understanding of the diseases caused when this domain is mutated. A secondary structural analysis and crystal structures of the wildtype and OPD2 associated mutant ABDs were obtained. The overall fold of the three proteins was equivalent as determined by circular dichroism spectroscopy and x-ray crystallography. The ABD from filamin A E254K showed 3.7 fold increased F-actin affinity, accompanied by a reduced thermostability (of 5.6 °C). Western blotting of OPD2, frontometaphyseal dysplasia (FMD) and PVNH patient fibroblast lysates showed similar levels of filamin A compared to the control cells. In addition the OPD and PVNH patient fibroblasts were able to adhere to fibronectin and migrate with an equivalent rate to control cells. Together these results have allowed correlations to be developed between structure, protein stability, actin affinity, cellular phenotype and the overall clinical phenotype. Showing that, at least in one example, OPD2 may be due to an increased actin affinity providing further evidence for a gain of function mechanism of OPD2.
17

Das purinerge System im vorderen Telenzephalon der Kaulquappe von Xenopus laevis und dessen Beteiligung an der Verarbeitung von Duftstoffantworten / The purinergic system in the anterior telencephalon of the tadpole of Xenopus laevis and its involvement in the processing of odorants.

Peters, Anna 15 March 2017 (has links)
No description available.
18

Chronic–Progressive Dopaminergic Deficiency Does Not Induce Midbrain Neurogenesis

Fauser, Mareike, Pan-Montojo, Francisco, Richter, Christian, Kahle, Philipp J., Schwarz, Sigrid C., Schwarz, Johannes, Storch, Alexander, Hermann, Andreas 03 May 2023 (has links)
Background: Consecutive adult neurogenesis is a well-known phenomenon in the ventricular–subventricular zone of the lateral wall of the lateral ventricles (V–SVZ) and has been controversially discussed in so-called “non-neurogenic” brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. Objective/Hypothesis: To analyze the influence of chronic–progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V–SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). Methods: We used Thy1-m[A30P]h α synuclein mice and Leu9′Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V–SVZ, the aqueduct and the fourth ventricle. Results: In both animal models, overall proliferative activity in the V–SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V–SVZ in Leu9′Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. Conclusions: Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely.
19

AVALIAÇÃO DO DESENVOLVIMENTO NEUROPSICOMOTOR EM PREMATUROS COM ALTERAÇÕES ULTRA-SONOGRÁFICAS CEREBRAIS NO PERÍODO NEONATAL / EVALUATE THE MOTOR AND COGNITIVE DEVELOPMENT OF PREMATURE BABIES WHO HAD BRAIN ULTRASOUND ALTERATIONS AT THE NEONATAL PERIODS

Cunha, Roxana Desterro e Silva da 13 December 2007 (has links)
Made available in DSpace on 2016-08-19T18:16:08Z (GMT). No. of bitstreams: 1 Roxana Desterro.pdf: 688994 bytes, checksum: ceb8107f09c4ea13f75ca8e4a721da06 (MD5) Previous issue date: 2007-12-13 / The scientific and technologic advances that occurred in the neonatal ITU over the last decades increased the survival rate of babies over and over more premature. Due to the occurency of possible sequelae inherent to this condition, it has been a bigger interest for de development of egress babies from these unites of treatment. The present study is retrospective, longitudinal, analytical of a control case, nested to a cohort. It proposes to evaluate the motor and cognitive development of premature babies who had brain ultrasound alterations at the neonatal period and the possible risk factors for its delay. It has been selected 99 premature children weighting 1800 grams or less in the birth and pregnancy age inferior to 37 weeks, submitted to a transfontanelar ultrasound in the neonatal period during their neonatal ITU (Intensive Therapy Unity) internment. The socio-economic, cultural, environmental, perinatal clinic events and mother characteristics were analysed. To evaluation of the neural, psychomotor development, the Denver II test was used. A sample made, in the majority, of corrected 12 months old children. The birth weight average was 1032 grams and the pregnancy average was 31,3 weeks. The ultrasonic alterations were present in 49, 4% of the children. In them, the periventricular leucomalacy was more frequent corrected one year old babies with alterations in the Denver II test. 34, 3% of the realized tests had unsatisfactory results. As risk factors for the development alteration, Ultrasonic alterations and low family incomes were significant for the study. . The positive predictive value of transfontanelar ultrasonic exams for the neural psychomotor development was 51,02% and the negative predictive value was 82% When the family incomes variable is added to the transfontanelar ultrasonic alterations, the positive predictive value increased to 90% and the negative predictive value decreased to 71,91%. It is believed that the variable family incomes added to the analysis is a good alternative to increase the prediction capacity development alterations of premature children with transfontanelar ultrasonic alterations. / Os avanços científicos e tecnológicos que ocorreram nas UTI neonatais nas últimas décadas, aumentaram a sobrevida de bebês cada vez mais prematuros. Devido ocorrência de possíveis seqüelas inerentes a essa condição, houve um interesse maior pelo desenvolvimento dos bebês egressos dessas unidades de tratamento. O presente estudo é retrospectivo, longitudinal, analítico do tipo caso controle, aninhado a uma coorte. Foi avaliado o desenvolvimento motor e cognitivo de prematuros que tiveram alterações ultra-sonográficas cerebrais no período neonatal e os possíveis fatores de risco para o seu atraso. Selecionou-se 99 crianças prematuras com peso de nascimento menor ou igual a 1800 gramas e idade gestacional abaixo de 37 semanas e que fizeram ultra-sonografia transfontanelar no período neonatal durante sua internação em UTI neonatal. Analisaram-se variáveis sócio-econômicas, culturais, ambientais, eventos clínicos perinatais e características maternas. Para avaliação do desenvolvimento neuropsicomotor utilizou-se o Teste de Denver II. A população foi composta de crianças com 12 meses de idade corrigida. A média de peso de nascimento foi de 1032 gramas e a média de idade gestacional foi de 31,3 semanas. As alterações ultra-sonográficas estiveram presentes em 49,4% das crianças. Destas, a leucomalácia periventricular foi a mais presente nos bebês com alteração no Teste de Denver II na idade corrigida de 1 ano. Dentre os testes realizados, 34,3% tiveram resultados desfavoráveis. Dos fatores de risco para alteração de desenvolvimento, alterações ultra-sonográficas cerebrais e renda familiar mostram-se estatisticamente significantes para o estudo. O valor preditivo positivo dos exames ultra-sonográficos transfontanelares para alterações de desenvolvimento neuropsicomotor, foi de 51,02% e valor preditivo negativo de 82%. Ao se acrescentar a variável renda familiar às alterações ultra-sonográficas transfontanelares, o valor preditivo positivo aumentou para 90% e o valor preditivo negativo reduziu-se para 71,91%. Acredita-se que o acréscimo à análise da variável renda familiar baixa é boa alternativa para aumentar a capacidade de predição de alterações do desenvolvimento de prematuros com alterações ultra-sonográficas transfontanelares.
20

Développement d’une nouvelle stratégie neuroprotectrice efficace et d’une méthode de quantification précoce non invasive des lésions de la matière blanche cérébrale immature sur un modèle animal

Pierre, Wyston Chadwick 08 1900 (has links)
Les grands prématurés sont particulièrement vulnérables aux lésions inflammatoires de la substance blanche (WMI) qui augmentent le risque de troubles cognitifs et neurodéveloppementaux à long terme dans cette population. L’utilisation de l’imagerie par résonance magnétique (IRM) dans cette population a permis une évaluation non invasive de la progression des WMI et une meilleure compréhension de la pathologie. Les WMI sont associées une activation de la microglie et des astrocytes et la production de facteurs pro-inflammatoires, dont l’interleukine 1 (IL-1). En utilisant un modèle de WMI induite par injection intracérébrale de lipopolysaccharides (LPS), nous avons évalué dans un premier temps les changements de méthylation de l’ADN durant la phase aigüe (24 h) et la phase chronique (21 jours) de l’inflammation. Par la suite, nous avons déterminé la capacité de l’IRM multimodale de détecter la lésion et la réponse thérapeutique à un antagoniste du récepteur de l’IL-1. Finalement, par le biais d’un antagoniste et d’un modulateur allostérique du récepteur à l’IL-1, nous avons évalué in vitro le rôle de la signalisation IL-1 durant la phase aigüe de la modulation de l’activation de la microglie et des astrocytes par le LPS. Nous avons démontré la présence d’une altération du méthylome cérébral dans divers mécanismes liés au neurodéveloppement et à la réponse immunitaire. De plus, l’application de l’IRM multimodale dans notre modèle a permis d’évaluer in vivo la lésion et le début de la réponse thérapeutique durant la phase aigüe (24 h) de l’inflammation. L’évaluation à l’IRM corrèle aux changements observés par immunomarquage post mortem. In vitro, le LPS induit une réponse mixte de la microglie et des astrocytes qui évoluent dans le temps vers une réponse pro-inflammatoire et neurotoxique. Bien que l’IL-1 est hautement exprimée par la microglie et les astrocytes, son inhibition a un effet limité sur la modulation de l’activation gliale dû à la multitude de voies activées par le LPS durant la phase aigüe de l’inflammation. / Very premature infants are particularly vulnerable to inflammatory white matter injury (WMI) which increases the risk of long-term cognitive and neurodevelopmental disorders in this population. The use of magnetic resonance imaging (MRI) in this population has allowed non-invasive assessment of the progression of WMI and a better understanding of the pathology. WMI is associated with activation of microglia and astrocytes and the production of pro-inflammatory mediators, including interleukin 1 (IL-1). Using a model of inflammatory WMI induced by intracerebral injection of lipopolysaccharides (LPS), we first evaluated the changes in DNA methylation during the acute phase (24 h) and the chronic phase (21 days) of inflammation. We then determined the ability of multimodal MRI to detect the lesion and the therapeutic response to an IL-1 receptor antagonist. Finally, using an antagonist and an allosteric modulator of the IL-1 receptor, we evaluated in vitro the contribution of IL-1 signaling during the acute phase of the modulation of microglia and astrocytes activation by LPS. We have shown the presence of persistent alteration DNA methylation profile in the brain that was associated with pathways involved in neurodevelopment and immune response. In addition, the application of multimodal MRI in our model made it possible to evaluate in vivo the lesion and the therapeutic response during the acute phase (24 h) of the inflammation. The changes at the MRI correlated to post-mortem evaluation by immunostaining. In vitro, LPS induce a mixed response of microglia and astrocytes which evolved over time toward a pro-inflammatory and neurotoxic phenotype. Although IL-1 is highly expressed by microglia and astrocytes, its inhibition has a limited effect on the modulation of glial activation due to the multitude of pathways activated by LPS during the acute phase of inflammation.

Page generated in 0.065 seconds