• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 732
  • 339
  • 175
  • 132
  • 31
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • 14
  • 10
  • 9
  • 9
  • Tagged with
  • 1768
  • 297
  • 216
  • 172
  • 148
  • 144
  • 125
  • 114
  • 102
  • 93
  • 93
  • 93
  • 91
  • 87
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
691

An Investigation On Compatibility Properties Of Exterior Finish Coats For Insulated Walls In Terms Of Water Vapour Pemeability And Modulus Ofelasticity

Ors, Kerime 01 September 2006 (has links) (PDF)
The compatibility properties of some contemporary finish coats together with their complementary layers used in insulated exterior walls were examined in terms of water vapour permeability and modulus of elasticity. Basic physical and mechanical properties of some synthetic-, cement- and polymer-based external finish coats were analyzed in laboratory. Some additional samples, complementing the wall section, were also examined for their water vapour permeability. Results showed that the finish coats were high vapour permeable although they had high resistance to water vapour permeation, which was achieved by their application in thin layers. Cement-based undercoats were found to be medium permeable. The application of primer and/or paint was found to decrease the permeability of finish coats in different ranges. Thermal insulation layer was found to interrupt water vapour flow considerably. Among polystyrene- and mineral-wool-based thermal insulation boards, rockwool was recommended as the insulation layer due to its medium vapour permeability. In conclusion, walls insulated externally with rockwool boards and plastered with polymer-based finish coat, FC8ACB or synthetic-based finish coat FC3SB were found to be the most proper combination in terms of breathing and thermal resistance capabilities. All finish coats seemed to have sufficient strength and except the synthetic-based finish coat, FC2SB, they seemed to be compatible with each other and with the masonry in terms of their Emod values. Further studies were recommended on some other compatibility properties of finishing systems, such as thermal and moisture dilatation properties, and on the relation between the resistance to water vapour permeation and water permeability.
692

Pore Network Modeling Of Fissured And Vuggy Carbonates

Erzeybek, Selin 01 June 2008 (has links) (PDF)
Carbonate rocks contain most of the world&rsquo / s proven hydrocarbon reserves. It is essential to predict flow properties and understand flow mechanisms in carbonates for estimating hydrocarbon recovery accurately. Pore network modeling is an effective tool in determination of flow properties and investigation of flow mechanisms. Topologically equivalent pore network models yield accurate results for flow properties. Due to their simple pore structure, sandstones are generally considered in pore scale studies and studies involving carbonates are limited. In this study, in order to understand flow mechanisms and wettability effects in heterogeneous carbonate rocks, a novel pore network model was developed for simulating two-phase flow. The constructed model was composed of matrix, fissure and vug sub domains and the sequence of fluid displacements was simulated typical by primary drainage followed by water flooding. Main mechanisms of imbibition, snap-off, piston like advance and pore body filling, were also considered. All the physically possible fluid configurations in the pores, vugs and fissures for all wettability types were examined. For configurations with a fluid layer sandwiched between other phases, the range of capillary pressures for the existence of such a layer was also evaluated. Then, results of the proposed model were compared with data available in literature. Finally, effects of wettability and pore structure on flow properties were examined by assigning different wettability conditions and porosity features. It was concluded that the proposed pore network model successfully represented two phase flow in fissured and vuggy carbonate rocks.
693

Uncertainty In Well Test And Core Permeability Analysis

Hapa, Cankat 01 December 2008 (has links) (PDF)
Reservoir permeability is one of the important parameters derived from well test analysis. Small-scale permeability measurements in wells are usually made using core plugs, or more recently, probe permeameter measurements. Upscaling of these measurements for comparisons with permeability derived well tests (Pressure Build-Up) can be completed by statistical averaging methods. Well Test permeability is often compared with one of the core plug averages: arithmetic, geometric and harmonic. A question that often arises is which average does the well test-derived permeability represent and over what region is this average valid? A second important question is how should the data sets be reconciled when there are discrepancies? In practice, the permeability derived from well tests is often assumed to be equivalent to the arithmetic (in a layered reservoir) or geometric (in a randomly distributed permeability field) average of the plug measures. These averages are known to be members of a more general power-average solution. This pragmatic approach (which may include an assumption on the near-well geology) is often flawed due to a number of reasons, which is tried to be explained in this study. The assessment of in-situ, reservoir permeability requires an understanding of both core (plug and probe) and well test measurements &amp / #8211 / in terms of their volume scale of investigation, measurement mechanism, interpretation and integration. Pressure build-up tests for 26 wells and core plug analysis for 32 wells have valid measured data to be evaluated. Core plug permeabilities are upscaled and compared with pressure build-up test derived permeabilities. The arithmetic, harmonic and geometric averages of core plug permeability data are found out for each facies and formation distribution. The reservoir permeability heterogeneities are evaluated in each step of upscaling procedure by computing coefficient of variation, The Dykstra-Parson&amp / #8217 / s Coefficient and Lorenz Coefficients. This study compared core and well test measurements in South East of Turkey heavy oil carbonate field. An evaluation of well test data and associated core plug data sets from a single field will be resulting from the interpretation of small (core) and reservoir (well test) scale permeability data. The techniques that were used are traditional volume averaging/homogenization methods with the contribution of determining permeability heterogeneities of facies at each step of upscaling procedure and manipulating the data which is not proper to be averaged (approximately normally distributed) with the combination of Lorenz Plot to identify the flowing intervals. As a result, geometrical average of upscaled core plug permeability data is found to be approximately equal to the well test derived permeability for the goodly interpreted well tests. Carbonates are very heterogeneous and this exercise will also be instructive in understanding the heterogeneity for the guidance of reservoir models in such a system.
694

Prediction Of Multiphase Flow Properties From Nuclear Magnetic Resonance Imaging

Karaman, Turker 01 February 2009 (has links) (PDF)
In this study a hybrid Pore Network (PN) model that simulates two-phase (water-oil) drainage and imbibition mechanisms is developed. The developed model produces Nuclear Magnetic Resonance (NMR) T2 relaxation times using correlations available in the literature. The developed PN was calibrated using experimental relative permeability data obtained for Berea Sandstone, Kuzey Marmara Limestone, Yenik&ouml / y Dolostone and Dolomitic Limestone core plugs. Pore network body and throat parameters were obtained from serial computerized tomography scans and thin section images. It was observed that pore body and throat sizes were not statistically correlated. It was also observed that the developed PN model can be used to model different displacement mechanisms. By using the synthetic data obtained from PN model, an Artificial Neural Network (ANN) model was developed and tested. It has been observed that the developed ANN tool can be used to estimate oil &ndash / water relative permeability data very well (with less than 0.05 mean square error) given a T2 signal. It was finally concluded that the developed tools can be used to obtain multiphase flow functions directly from an NMR well log such as Combinable Magnetic Resonance (CMR).
695

Effect Of Coating Materials And Mixture Constituents On The Permeability Of Concrete

Tekin, Ahmet Veli 01 March 2012 (has links) (PDF)
The improvement in the impermeability of concrete was studied using different methods. The main aim was to investigate impermeability improvement of concrete and to compare these methods. Two different methods were examined to investigate and compare impermeability and strength improvement of concrete by using two different sets of concrete specimens. These methods included the application of coating materials to concrete and the production of concrete using different constituent amounts and types. The first set of concrete specimens was prepared by applying two different coating materials (a coating material including both powder and liquid components / and a coating material including only a liquid component) on reference concrete specimens separately. The second set of concrete specimens was prepared using different proportions of concrete constituents such as cement, water, steel and plastic fibers, mineral and chemical concrete admixtures. Various tests were conducted on both sets of concrete specimens in order to compare the permeability of concrete specimens. However, some of these tests v were not applied on all of the specimens because of test and material specifications. The tests were used to evaluate compressive strength, water absorption, chloride ion penetration and depth of water penetration under pressure. These test methods were carried out on concrete cube specimens and concrete cores taken from those specimens according to the relevant standards. It was found that the permeability of the concrete specimens decreased significantly when the coating material which was composed of the combination of powder and liquid components was applied on concrete specimens. However, permeability did not decrease significantly for concrete specimens coated with the coating material composed of only a liquid component. Significant improvement in the impermeability of the concrete specimens was observed when the amount of cement was increased, the water-to-cement ratio was decreased, mineral admixtures (silica fume and fly ash) and plasticizers were used. This improvement was associated with densification of the concrete microstructure and reduction in capillary pores as a result of pozzolanic reaction and due to reduction in water-to-cement ratio. Coating materials were determined to be effective for concretes with high permeability prior to coating whereas their effect was less significant for lower-initial permeability concretes. Moreover, the effect of coating materials on permeability differed depending on their chemical compositions. The effect of using steel fibers and plastic fibers for the improvement of concrete impermeability was found to be insignificant.
696

個人の集団透過性に関する構成概念妥当性の検証

黒川, 雅幸, 吉田, 俊和, KUROKAWA, Masayuki, YOSHIDA, Toshikazu 28 December 2007 (has links)
No description available.
697

濃尾平野の地下水状態と地盤沈下に関する研究

佐藤, 健, Sato, Takeshi 25 March 1981 (has links)
名古屋大学博士学位論文 学位の種類:工学博士(課程) 学位授与年月日:昭和56年3月25日
698

Analysis of HMA permeability through microstructure characterization and simulation of fluid flow in X-ray CT images

Al Omari, Aslam Ali Mufleh 17 February 2005 (has links)
The infiltration of water in asphalt pavements promotes moisture damage primarily through damaging the binder cohesive bond and the adhesive bond between aggregates and binder. Moisture damage is associated with excessive deflection, cracking, and rutting. The first step in addressing the problems caused by the presence of water within pavement systems is quantifying the permeability of hot mix asphalt (HMA) mixes. This dissertation deals with the development of empirical-analytical and numerical approaches for predicting the permeability of HMA. Both approaches rely on the analysis of air void distribution within the HMA microstructure. The empirical-analytical approach relies on the development of modified forms of the Kozeny-Carman equation and determining the material properties involved in this equation through three dimensional microstructure analyses of X-ray Computed Tomography (CT) images. These properties include connected percent air voids (effective porosity), tortuosity, and air void specific surface area. A database of materials and permeability measurements was used to verify the developed predicting equation. The numerical approach, which is the main focus of this study, includes the development of a finite difference numerical simulation model to simulate the steady incompressible fluid flow in HMA. The model uses the non-staggered system that utilizes only one cell to solve for all governing equations, and it is applicable for cell Reynolds number (Rec) values that are not restricted by |Rec|≤2. The validity of the numerical model is verified through comparisons with closed-form solutions for idealized microstructure. The numerical model was used to find the components of the three-dimensional (3-D) permeability tensor and permeability anisotropy values for different types of HMA mixes. It was found that the principal permeability directions values are almost in the horizontal and vertical directions with the maximum permeability being in the horizontal direction.
699

Nuclear magnetic resonance imaging and analysis for determination of porous media properties

Uh, Jinsoo 25 April 2007 (has links)
Advanced nuclear magnetic resonance (NMR) imaging methodologies have been developed to determine porous media properties associated with fluid flow processes. This dissertation presents the development of NMR experimental and analysis methodologies, called NMR probes, particularly for determination of porosity, permeability, and pore-size distributions of porous media while the developed methodologies can be used for other properties. The NMR relaxation distribution can provide various information about porous systems having NMR active nuclei. The determination of the distribution from NMR relaxation data is an ill-posed inverse problem that requires special care, but conventionally the problem has been solved by ad-hoc methods. We have developed a new method based on sound statistical theory that suitably implements smoothness and equality/inequality constraints. This method is used for determination of porosity distributions. A Carr-Purcell-Meiboom-Gill (CPMG) NMR experiment is designed to measure spatially resolved NMR relaxation data. The determined relaxation distribution provides the estimate of intrinsic magnetization which, in turn, is scaled to porosity. A pulsed-field-gradient stimulated-echo (PFGSTE) NMR velocity imaging experiment is designed to measure the superficial average velocity at each volume element. This experiment measures velocity number distributions as opposed to the average phase shift, which is conventionally measured, to suitably quantify the velocities within heterogeneous porous media. The permeability distributions are determined by solving the inverse problem formulated in terms of flow models and the velocity data. We present new experimental designs associated with flow conditions to enhance the accuracy of the estimates. Efforts have been put forth to further improve the accuracy by introducing and evaluating global optimization methods. The NMR relaxation distribution can be scaled to a pore-size distribution once the surface relaxivity is known. We have developed a new method, which avoids limitations on the range of time for which data may be used, to determine surface relaxivity by the PFGSTE NMR diffusion experiment.
700

First-principles study of palladium-based metal alloys as hydrogen purification membranes

Ling, Chen 10 November 2009 (has links)
Hydrogen is a good candidate as a future energy source. Current technologies generate hydrogen from hydrocarbons as mixtures with other species like CO and CO₂. High flux and resistance to contaminants are required for membranes used to separate hydrogen from these mixtures, as well as other requirements such as long operation standard and low cost. Development of new membranes is hampered by the large effort and time required to experimentally develop and test these membranes. I show how first-principles Density Functional Theory (DFT) calculations combined with coarse-grained modeling can be used to predict the performance of metal alloys as H₂ purification membranes. I introduce quantitative modeling methods based on DFT calculations that assess the relative role of surface resistances for metal alloy membranes, the bulk permeation rate through alloy membranes, and the selectivity of metal membranes. In my study, I first examined the importance of surface processes for thin membranes. The possibility of using new materials such as PdCuAg ternary alloys and metal sulfides as hydrogen purification membranes were examined. Finally I predicted the absorption and diffusion of another atomic species, carbon, in the membranes. My methods require no experimental input apart from the knowledge of the bulk crystal structure, so they provide an alternate way to explore new materials as hydrogen purification membranes. My results will be a useful guide for future experimental studies.

Page generated in 0.0525 seconds