Spelling suggestions: "subject:"petite.""
431 |
Etude de techniques de calculs multi-domaines appliqués à la compatibilité électromagnétique / Study of multi-domain computation techniques applied to electromagnetic compatibilityPatier, Laurent 17 November 2010 (has links)
Le contexte d’étude est celui de la Compatibilité ÉlectroMagnétique (CEM). L’objectif de la CEM est, comme son nom l’indique, d’assurer la compatibilité entre une source de perturbation électromagnétique et un système électronique victime. Or, la prédiction de ces niveaux de perturbation ne peut pas s’effectuer à l’aide d’un simple calcul analytique, en raison de la géométrie qui est généralement complexe pour le système que l’on étudie, tel que le champ à l’intérieur d’un cockpit d’avion par exemple. En conséquence, nous sommes contraints d’employer des méthodes numériques, dans le but de prédire ce niveau de couplage entre les sources et les victimes. Parmi les nombreuses méthodes numériques existantes à ce jour, les méthodes Multi-Domaines (MD) sont très prisées. En effet, elles offrent la liberté aux utilisateurs de choisir la méthode numérique la plus adaptée, en fonction de la zone géométrique à calculer. Au sein de ces méthodes MD, la « Domain Decomposition Method » (DDM) présente l’avantage supplémentaire de découpler chacun de ces domaines. En conséquence, la DDM est particulièrement intéressante, vis-à-vis des méthodes concurrentes, en particulier sur l’aspect du coût numérique. Pour preuve, l’ONERA continue de développer cette méthode qui ne cesse de montrer son efficacité depuis plusieurs années, notamment pour le domaine des Surfaces Équivalentes Radar (SER) et des antennes. L’objectif de l’étude est de tirer profit des avantages de cette méthode pour des problématiques de CEM. Jusqu’à maintenant, de nombreuses applications de CEM, traitées par le code DDM, fournissaient des résultats fortement bruités. Même pour des problématiques électromagnétiques très simples, des problèmes subsistaient, sans explication convaincante. Ceci justifie cette étude. Le but de cette thèse est de pouvoir appliquer ce formalisme DDM à des problématiques de CEM. Dans cette optique, nous avons été amenés à redéfinir un certain nombre de conventions, qui interviennent au sein de la DDM. Par ailleurs, nous avons développé un modèle spécifique pour les ouvertures, qui sont des voies de couplage privilégiées par les ondes, à l’intérieur des cavités que représentent les blindages. Comme les ouvertures sont, en pratique, de petites dimensions devant la longueur d’onde, on s’est intéressé à un modèle quasi-statique. Nous proposons alors un modèle, qui a été implémenté, puis validé. Suite à ce modèle, nous avons développé une méthode originale, basée sur un calcul en deux étapes, permettant de ne plus discrétiser le support des ouvertures dans les calculs 3D. / The context of the study is the ElectroMagnetic Compatibility (EMC). Principal aim of the EMC is to ensure the compatibility between an electromagnetic perturbance source and an electronic device victim. Unfortunately, the perturbation levels prediction can not be made using an analytic formula, because the geometry which is generally complex for the interesting system, for example the field inside an aircraft’s cockpit. Therefore, we are contrained to use numerical methods, to be able to evaluate this coupling level between sources and victims. Among several existing numerical methods, Multi-Domains (MD) methods are very interesting. They offer to users the freedom to choose the most powerfull numerical method, in terms of the geometrical zone evaluated. With the MD methods, « Domain Decomposition Method » (DDM) has the avantage of decouplingeach of theses areas. Therefore, DDM is very interesting, compared to other methods, in particular on the numerical cost. ONERA keeps on developing this method, which has not stop showing his efficiency since several years, in particular in Radar Cross Section (RCS) and antennas. The objective of this study is to take the benefits of this method for EMC problems. Up to now, several EMC applications treated by the DDM code provided results strongly noisy. Even for with very simple electromagnetic cases, some problems remained without convincing explanations. This justifies this study. The aim of this thesis is to can be able to apply DDM formalism to EMC problems. Then, we have been induced to redefine a number of conventions which are involved in the DDM. Otherwise, we have developed a specific model for the apertures which are privilegied tracts of the coupling by the penetration of waves inside cavities (shieldings). As the apertures have in practice smaller dimensions compared to the wavelength, we have been interested to a quasistatic model which was developped, implemented and validated. Following this model, we have developed an original method, based on a two step calculation, able to do not discretize the apertures support in 3D computations.
|
432 |
Etude de champs de température séparables avec une double décomposition en valeurs singulières : quelques applications à la caractérisation des propriétés thermophysiques des matérieux et au contrôle non destructif / Study of separable temperatur fields with a double singular value decomposition : some applications in characterization of thermophysical properties of materials and non destructive testingAyvazyan, Vigen 14 December 2012 (has links)
La thermographie infrarouge est une méthode largement employée pour la caractérisation des propriétés thermophysiques des matériaux. L’avènement des diodes laser pratiques, peu onéreuses et aux multiples caractéristiques, étendent les possibilités métrologiques des caméras infrarouges et mettent à disposition un ensemble de nouveaux outils puissants pour la caractérisation thermique et le contrôle non desturctif. Cependant, un lot de nouvelles difficultés doit être surmonté, comme le traitement d’une grande quantité de données bruitées et la faible sensibilité de ces données aux paramètres recherchés. Cela oblige de revisiter les méthodes de traitement du signal existantes, d’adopter de nouveaux outils mathématiques sophistiqués pour la compression de données et le traitement d’informations pertinentes. Les nouvelles stratégies consistent à utiliser des transformations orthogonales du signal comme outils de compression préalable de données, de réduction et maîtrise du bruit de mesure. L’analyse de sensibilité, basée sur l’étude locale des corrélations entre les dérivées partielles du signal expérimental, complète ces nouvelles approches. L'analogie avec la théorie dans l'espace de Fourier a permis d'apporter de nouveaux éléments de réponse pour mieux cerner la «physique» des approches modales.La réponse au point source impulsionnel a été revisitée de manière numérique et expérimentale. En utilisant la séparabilité des champs de température nous avons proposé une nouvelle méthode d'inversion basée sur une double décomposition en valeurs singulières du signal expérimental. Cette méthode par rapport aux précédentes, permet de tenir compte de la diffusion bi ou tridimensionnelle et offre ainsi une meilleure exploitation du contenu spatial des images infrarouges. Des exemples numériques et expérimentaux nous ont permis de valider dans une première approche cette nouvelle méthode d'estimation pour la caractérisation de diffusivités thermiques longitudinales. Des applications dans le domaine du contrôle non destructif des matériaux sont également proposées. Une ancienne problématique qui consiste à retrouver les champs de température initiaux à partir de données bruitées a été abordée sous un nouveau jour. La nécessité de connaitre les diffusivités thermiques du matériau orthotrope et la prise en compte des transferts souvent tridimensionnels sont complexes à gérer. L'application de la double décomposition en valeurs singulières a permis d'obtenir des résultats intéressants compte tenu de la simplicité de la méthode. En effet, les méthodes modales sont basées sur des approches statistiques de traitement d'une grande quantité de données, censément plus robustes quant au bruit de mesure, comme cela a pu être observé. / Infrared thermography is a widely used method for characterization of thermophysical properties of materials. The advent of the laser diodes, which are handy, inexpensive, with a broad spectrum of characteristics, extend metrological possibilities of infrared cameras and provide a combination of new powerful tools for thermal characterization and non destructive evaluation. However, this new dynamic has also brought numerous difficulties that must be overcome, such as high volume noisy data processing and low sensitivity to estimated parameters of such data. This requires revisiting the existing methods of signal processing, adopting new sophisticated mathematical tools for data compression and processing of relevant information.New strategies consist in using orthogonal transforms of the signal as a prior data compression tools, which allow noise reduction and control over it. Correlation analysis, based on the local cerrelation study between partial derivatives of the experimental signal, completes these new strategies. A theoretical analogy in Fourier space has been performed in order to better understand the «physical» meaning of modal approaches.The response to the instantaneous point source of heat, has been revisited both numerically and experimentally. By using separable temperature fields, a new inversion technique based on a double singular value decomposition of experimental signal has been introduced. In comparison with previous methods, it takes into account two or three-dimensional heat diffusion and therefore offers a better exploitation of the spatial content of infrared images. Numerical and experimental examples have allowed us to validate in the first approach our new estimation method of longitudinal thermal diffusivities. Non destructive testing applications based on the new technique have also been introduced.An old issue, which consists in determining the initial temperature field from noisy data, has been approached in a new light. The necessity to know the thermal diffusivities of an orthotropic medium and the need to take into account often three-dimensional heat transfer, are complicated issues. The implementation of the double singular value decomposition allowed us to achieve interesting results according to its ease of use. Indeed, modal approaches are statistical methods based on high volume data processing, supposedly robust as to the measurement noise.
|
Page generated in 0.0516 seconds