• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 60
  • 38
  • 32
  • 14
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 405
  • 405
  • 136
  • 134
  • 124
  • 106
  • 106
  • 100
  • 87
  • 79
  • 69
  • 55
  • 39
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century

He, Bo January 2004 (has links)
Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers. Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime. Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage. The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application. Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range. The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology. Keywords:Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English
62

Composite thermal capacitors for transient thermal management of multicore microprocessors

Green, Craig Elkton 06 June 2012 (has links)
While 3D stacked multi-processor technology offers the potential for significant computing advantages, these architectures also face the significant challenge of small, localized hotspots with very large heat fluxes due to the placement of asymmetric cores, heterogeneous devices and performance driven layouts. In this thesis, a new thermal management solution is introduced that seeks to maximize the performance of microprocessors with dynamically managed power profiles. To mitigate the non-uniformities in chip temperature profiles resulting from the dynamic power maps, solid-liquid phase change materials (PCMs) with an embedded heat spreader network are strategically positioned near localized hotspots, resulting in a large increase in the local thermal capacitance in these problematic areas. Theoretical analysis shows that the increase in local thermal capacitance results in an almost twenty-fold increase in the time that a thermally constrained core can operate before a power gating or core migration event is required. Coupled to the PCMs are solid state coolers (SSCs) that serve as a means for fast regeneration of the PCMs during the cool down periods associated with throttling events. Using this combined PCM/SSC approach allows for devices that operate with the desirable combination of low throttling frequency and large overall core duty cycles, thus maximizing computational throughput. The impact of the thermophysical properties of the PCM on the device operating characteristics has been investigated from first principles in order to better inform the PCM selection or design process. Complementary to the theoretical characterization of the proposed thermal solution, a prototype device called a "Composite Thermal Capacitor (CTC)" that monolithically integrates micro heaters, PCMs and a spreader matrix into a Si test chip was fabricated and tested to validate the efficacy of the concept. A prototype CTC was shown to increase allowable device operating times by over 7X and address heat fluxes of up to ~395 W/cm2. Various methods for regenerating the CTC have been investigated, including air, liquid, and solid state cooling, and operational duty cycles of over 60% have been demonstrated.
63

Topology Optimization Of Composite Heat-Sinks Involving Phase-Change Material

Srinivas, V S S 02 1900 (has links)
The principal goal of this thesis is to develop a systematic method for the design of composite heat sinks (CHSs) that serve as passive and transient cooling devices for microelectronics. This is accomplished by posing the CHS design problem as a topology optimization problem wherein a phase-change material and a high-conductivity material are to be optimally distributed. Two different types of formulations are proposed. The first one aims to maximize the time of operation before a tolerable temperature is reached at the interface between a heat source and the CHS. The second one aims to minimize the maximum temperature across the heating interface for a given time of operation. The two materials are interpolated in topology optimization using the usual mixture law with penalty. The phase-change is modeled using the apparent heat capacity method in which the specific heat is taken as a nonlinear function of the temperature so that the latent heat absorption is accounted for at the melting point. The ensuing new transient topology optimization problem involving an interpolated material property that depends on the state variable is solved using continuous optimization algorithm. The validity of the phase-change modeling is verified with a one dimensional model as well as experimentation. Analytical sensitivity analysis is derived and verified with the finite difference derivatives. Several examples are solved to illustrate the intricacies of the problem and the effectiveness and the limitations of the proposed design method. Prototypes of an intuitively conceived CHS and optimized one are made. An experimental setup is devised to test the two prototypes. Based on the insight gained from the experiments, an improved conduction model is studied to also incorporate convective heat transfer also into the model.
64

High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century

He, Bo January 2004 (has links)
<p>Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers.</p><p>Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime.</p><p>Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage.</p><p>The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application.</p><p>Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range.</p><p>The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology.</p><p><b>Keywords:</b>Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English</p>
65

Výrobník ledu s přímým odparem / Ice maker with direct evaporation

Loibl, Jan January 2015 (has links)
The theoretical part of the diploma thesis deals with introduction to the issue of refrigeration systems with thermal energy storage. Possibilities of thermal energy storage with phase change are introduced. The thermodynamic principle of functioning of the particular refrigeration system type is explained here as well as its coefficient of performance and fundamental components. In addition, several examples of ice-making systems are discussed. In the practical part the design of a particular refrigeration system is calculated. The main part of the design is the cold evaporator with direct evaporation and the possibility of ice production and its usage for thermal energy storage. The calculation of the overall two-phase heat transfer is carried out.
66

Frost nucleation and growth on hydrophilic, hydrophobic, and biphilic surfaces

Van Dyke, Alexander Scott January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Amy R. Betz / The purpose of this research was to test if biphilic surfaces mitigate frost and ice formation. Frost, which forms when humid air comes into contact with a surface that is below the dew point and freezing temperature of water, hinders engineering systems such as aeronautics, refrigeration systems, and wind turbines. Most previous research has investigated increasingly superhydrophobic materials to delay frost formation; however, these materials are dependent on fluctuating operating conditions and surface roughness. Therefore, the hypothesis for this research was that a biphilic surface would slow the frost formation process and create a less dense frost layer, and water vapor would preferentially condense on hydrophilic areas, thus controlling where nucleation initially occurs. Preferential nucleation can control the size, shape, and location of frost nucleation. To fabricate biphilic surfaces, a hydrophobic material was coated on a silicon wafer, and a pattern of hydrophobic material was removed using photolithography to reveal hydrophilic silicon-oxide. Circles were patterned at various pitches and diameters. The heat sink was comprised of two parts: a solid bottom half and a finned upper half. Half of the heat sink was placed inside a polyethylene base for insulation. Tests were conducted in quiescent air at room temperature, 22 °C, and two relative humidities, 30% and 60%. Substrate temperatures were held constant throughout all tests. All tests showed a trend that biphilic surfaces suppress freezing temperature more effectively than plain hydrophilic or hydrophobic surfaces; however, no difference between pattern orientation or size was noticed for maximum freezing temperature. However, the biphilic patterns did affect other aspects such as time to freezing and volume of water on the surface. These effects are from the patterns altering the nucleation and coalescence behavior of condensation.
67

Using IR thermography to determine the heat flux removed by spray cooling a high-temperature metallic surface

Pedotto, Cristina January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Bruce R. Babin / A significant body of literature exists for experiments in spray cooling applications that utilize one-dimensional heat transfer through a metal ingot to determine the average surface heat flux. Due to inherent non-uniformities in spray distributions, measurements that account for the two-dimensional effects are required. In this study, an infrared (IR) camera was used to capture the two-dimensional temperature distribution formed when spraying an electrically heated NiChrome surface with three different fluids. IR thermography captured the thermal response of the un-sprayed side of a 0.005-inch (0.125mm) think strip of NiChrome exposed to spray from a 90° full-cone nozzle at low mass fluxes (0.025 – 0.045 lb/ft[superscript]2-s / 0.122 – 0.220 kg/m[superscript]2-s) from a distance of approximately 5 to 11 inches (13 to 28cm). Results were measured for surface average temperatures ranging from 150 to 600°F (65 – 315°C).
68

The Application of Microencapsulated Biobased Phase Change Material on Textile

Hagman, Susanna January 2016 (has links)
The increasing demand for energy in combination with a greater awareness for our environmental impact have encouraged the development of sustainable energy sources, including materials for energy storage. Latent heat thermal energy storage by the use of phase change material (PCM) have become an area of great interest. It is a reliable and efficient way to reduce energy consumption. PCMs store and release latent heat, which means that the material can absorb the excess of heat energy, save it and release it when needed. By introducing soy wax as a biobased PCM and apply it on textile, one can achieve a thermoregulation material to be used in buildings and smart textiles. By replacing the present most used PCM, paraffin, with soy wax one cannot only decrease the use of fossil fuel, but also achieve a less flammable material. The performance of soy wax PCM applied on a textile fabric have not yet been investigated but can be a step towards a more sustainable energy consumption. The soy wax may also broaden the application for PCM due to its low flammability. The aim is to develop an environmental friendly latent heat thermal energy storage material to be used within numerous application fields.
69

Phase-Change Contrast Agents for Targeting and Delivery

Hadinger, Kyle January 2016 (has links)
Phase-change contrast agents (PCCAs) are an innovative form of imaging agent with practical applications in both the research and clinical settings. PCCAs are derived from gaseous microbubbles, which are able to act as targeted-contrast agents through conjugation of a ligand that is selective for an overexpressed receptor or biomarker in a given disease. Gaseous microbubbles can be condensed to liquid phase nanodroplets, which should be sufficiently small to extravasate into cells and/or tissues given their size and stability. Once liquid nanodroplets have internalized within a given tissue, they can be "activated" back into gaseous microbubbles with ultrasound at clinically used frequencies and energy outputs. This is purposeful as microbubbles provide much greater ultrasound reflectivity than nanodroplets. In this study, PCCAs and/or microbubbles act as a targeting agent in multiple scenarios. The projects in this study include- examination of binding and internalization of targeted PCCAs with different gaseous cores within MDA-MB-231 breast cancer cells, vaporization of liquid phase nanodroplets through application of acoustic energy via focused ultrasound (FUS), and targeting vulnerable plaque in the heart with different types of targeted microbubbles under varying shear-stresses.
70

ELECTRON FIELD-EMISSION FROM CARBON NANOTUBES FOR NANOMACHINING APPLICATIONS

Sanchez, Jaime A. 01 January 2008 (has links)
The ability to pattern in the nanoscale to drill holes, to draw lines, to make circles, or more complicated shapes that span a few atoms in width is the main driver behind current efforts in the rapidly growing area of nanomanufacturing. In applications ranging from the microprocessor industry to biomedical science, there is a constant need to develop new tools and processes that enable the shrinking of devices. For this and more applications, nanomanufacturing using electron beams offers a window of opportunity as a top-down approach since electrons, unlike light, have a wavelength that is in the order of the atomic distance. Though the technology based on electron beams has been available for more than twenty years, new concepts are constantly being explored and developed based on fundamental approaches. As such, a tool that utilizes electron field-emission from carbon nanotubes was proposed to accomplish such feats. A full numerical analysis of electron field-emission from carbon nanotubes for nanomachining applications is presented. The different aspects that govern the process of electron field-emission from carbon nanotubes using the finite element method are analyzed. Extensive modeling is carried here to determine what the effect of different carbon nanotube geometries have on their emission profiles, what energy transport processes they are subject to, and establish what the potential experimental parameters are for nanomachining. This dissertation builds on previous efforts based on Monte Carlo simulations to determine electron deposition profiles inside metals, but takes them to next level by considering realistic emission scenarios. A hybrid numerical approach is used that combines the two-temperature model with Molecular Dynamics to study phase change and material removal in depth. The use of this method, allows the determination of the relationship between the amount of energy required to remove a given number of atoms from a metallic workpiece and the number of carbon nanotubes and their required settings in order to achieve nanomachining. Finally, the grounds for future work in this area are provided, including the need for novel electron focusing systems, as well as the extension of the hybrid numerical approach to study different materials.

Page generated in 0.0433 seconds