• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 12
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 107
  • 103
  • 33
  • 22
  • 17
  • 16
  • 16
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Deep-placed phosphate fertiliser improves phosphorus uptake and seed yield of canola (Brassica napus L.) in a Mediterranean-type climate

Rose, Terry January 2008 (has links)
In Mediterranean-type climates, topsoil frequently dries out during spring. Problems associated with reduced nutrient (P, K) availability in dry topsoil may be overcome by placing fertilisers deeper in the soil, where the soil is more likely to remain moist for longer periods as opposed to conventional fertiliser placement. Deep-P placement has resulted in significant yield improvements for lupin crops in Mediterranean environments because lupin crops generally require soil P supply during spring (throughout the flowering stage); in contrast, wheat yields have seldom improved with deep P placement, presumably because plants have accumulated sufficient P prior to spring (grain filling stage) for maximum grain yields. The P and K accumulation patterns of canola had not been investigated, and therefore any potential yield benefits of deep placed fertilisers were unknown. This study aimed to define the P and K demands of canola throughout the growing season, and assess the viability of deep placement of fertiliser in matching soil P and K supply to crop demand. The study further investigated the impact of deep placement of P fertiliser on root growth and distribution throughout the soil profile. Initial glasshouse studies compared the P and K accumulation patterns of several canola cultivars with wheat, and found that the P and K demand of canola continued until later into the season than wheat, but there was little difference in the P and K accumulation patterns of the various canola cultivars. Further experiments in sand culture determined that regardless of the level of K supply, canola plants had accumulated sufficient K for maximum seed yields by early flowering. Under high P supply, canola plants had accumulated enough P for maximum seed yields by early flowering, but when P supply during vegetative growth was just adequate, plants required a continual P supply until mid silique-filling to attain maximum yields. Because plants had accumulated sufficient K for maximum seed yields by early flowering (therefore topsoil drying in spring was unlikely to affect yields), further field experiments examined only deep placement of P fertiliser to improve P uptake and yields.
102

A comparison of soil and foliar-applied silicon on nutrient availability and plant growth and soil-applied silicon on phosphorus availability.

Matlou, Mmakgabo Cordelia. January 2006 (has links)
A greenhouse study was carried out to investigate the effectiveness of soil-applied silicon (Si) with that of foliar applications for sorghum growth. Silicon sources were soil-applied as calmasil (calcium silicate) at two rates (4 and 8t/ha) and foliar applied Si including pure K-silicate, K-humate and K-fulvate (all three foliar treatments at rates of 300 and 600 ppm). Another treatment included soil applied calmasil plus low rate of foliar applied K-humate. The soils used for the greenhouse trial were Cartref, Glenrosa, Nomanci and Fernwood. Results indicated that application of calcium silicate to the soil before planting increased sorghum yield and Si uptake in three of the four soils. Silicon uptake from different experimental treatments followed the order: Calmasil 8t/ha > calmasil 4t/ha ~ calmasil + 300 ppm K-humate> K-humate = K-fulvate = pure-K silicate = control. Foliar sprays were ineffective at increasing yield, Si content of the plant tissues or Si uptake. The concentrations of exchangeable Ca, Mg as well as soil pH were significantly increased by calmasil treatments. Extractable AI concentrations were also reduced due to the Iiming effect of calcium silicate and also possibly formation of insoluble aluminosilicates. The yield response to applied calmasil seemed to be primarily related to its Iiming effect and reductions in extractable AI in the Cartref, Glenrosa and Nomanci soils. The dry matter yield was highest in Fernwood and lowest in Cartref soil. However, there was no significant yield response to calmasil in Fernwood soil which had an initial pH of 5.8 and insignificant extractable AI concentrations. Therefore application of calcium silicate had no significant effect on extractable AI concentration in this soil. Yield response to calmasil may also have been partly due to direct positive effects of applied Si on crop growth through mechanisms such as increased photosynthetic rate and reduced transpiration rate, Addition of calmasil increased the concentrations of Si in the plant tissues and reduced those of N, P and Kin Nomanci and Fernwood soils respectively. This indicates that nutrient interactions were occurring in the plant. It was concluded that foliar-application is not an effective way of applying Si to a Siresponsive crop such as sorghum when growing in soils low in extractable soil Si. This is because Si is accumulated in plant tissues in similar amounts to macronutrients. It was also concluded that in future, studies of crop response to applied Si should include the use of non-Iiming source of Si (e.g. silicic acid) so as to separate a liming effect of calcium silicate from effect of applied Si. In a laboratory study, the effects of applied silicic acid, calcium silicate and calcium hydroxide on levels of extractable P in two Si-deficient soils were investigated. Two soils (Fernwood and Nomanci soils) were treated with two rates of P and three soil amendments (calcium silicate, calcium hydroxide and silicic acid) and incubated for six weeks at room temperature. Phosphorus was extracted using Truog, AMBIC and resin methods, and levels of exchangeable and solution AI and extractable and solution Si were also measured. Application of calcium silicate and calcium hydroxide increased soil pH in both soils while silicic acid additions had no significant effect compared with the control. The pH increase was much greater in the Fernwood than Nomanci soil because of the low buffering capacity of the sandy Fernwood soil. Exchangeable AI and concentrations of monomeric and total AI in soil solution generally followed the order: control ~ silicic acid> calcium silicate> calcium hydroxide. The lowering of soluble AI concentrations in the silicic acid treatments was attributed to formation of insoluble aluminosilicate compounds while that in the calcium silicate and calcium hydroxide treatments was attributed to their Iiming effects causing a rise in pH. Concentrations of Si in soil solution were lower in the calcium hydroxide than the control treatment suggesting the solubility of Si decreased with increased pH. Additions of both Si sources increased Si concentrations in solution and the effect was more marked for the calcium silicate treatment. This was attributed to formation of insoluble aluminosilicates in the silicic acid treatment. Concentrations of H2S04extractable Si with treatment did not closely follow the same trends as those for Si concentrations in soil solution. That is, levels of extractable Si were very much higher in the calcium silicate than silicic acid treatment in both soils. In addition, concentrations of extractable Si in the calcium hydroxide treatment were similar to control in the Nomanci soil, while for the Fernwood soil, concentrations in the calcium hydroxide treatment were exceptionally high. It was suggested that liming with calcium silicate or calcium hydroxide had rendered some Si-containing compounds in the soil acid-extractable and that the nature of acid-extractable Si fraction need further study in future. The quantities of P extracted from the two soils by the various extractants followed the order: Truog> AMBle> resin. The greatest increase in extractable P induced by additions of P was recorded for Truog P and the least for resin P. The effects of Iiming (addition of calcium silicate or calcium hydroxide) on extractable P levels differed depending on the soil and extractant used with increase, decrease or no effect being recorded. Such results confirm the complexity of lime and P interactions which occur in acid soils. Additions of silicic acid had no effect on levels of extractable P, compared to control. It was suggested that the reason for this was that phosphate is adsorbed to AI and Fe oxide surfaces much more strongly than silicate. As a result, additions of Si are ineffective at increasing extractable P levels. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
103

Phosphorus fertilization : effects on asparagus yield, and soil microbial parameters

Sommerville, David W. January 2004 (has links)
Asparagus (Asparagus officinalis) is a perennial crop well suited to grow in Quebec. Despite high demand for this crop, asparagus production is declining because of asparagus root rot disease that is caused by Fusarium spp. Phosphorus is one of the most important nutrients for the production of healthy asparagus roots that may resist infection by Fusarium. The objective of this study was to determine the effects of phosphorus (P) applications on asparagus yield and soil microbial parameters. Plots receiving 0 to 200% of the P recommendation, based on the Centre de reference en agriculture et agroalimentaire du Quebec (CRAAQ) guidelines, did not differ significantly (p < 0.05) in first year yield or plant tissue concentrations. However, asparagus receiving no fertilizer had 2 to 3 times higher arbuscular mycorrhizal colonisation of roots than other treatments in May 2003. Fresh marketable yield was negatively correlated to Fusarium incidence (p = 0.0091 r = -0.51) suggesting that plants with higher yields are less susceptible to Fusarium symptoms and that producers should avoid over-harvesting low yielding plants to reduce Fusarium spread in the field. Soil microbial activity was not affected consistently by P fertilizers because of high variability in the field.
104

Phosphorus fertilization : effects on asparagus yield, and soil microbial parameters

Sommerville, David W. January 2004 (has links)
No description available.
105

Effect of crop residue qualities on decomposition rates, soil phosphorus dynamics and plant phosphorus uptake.

Iqbal, Shahriar Mohammod January 2009 (has links)
Phosphorus (P) is an essential plant nutrient that may limit plant growth and agricultural productivity if not available for crop plant uptake in sufficient quantities at the time required. Many Australian soils are deficient in available P, despite a long history of P fertilizer application, and this is due to fertilizer P rapidly becoming unavailable largely through biochemical fixation. The resulting low P fertilizer efficiency, coupled with rapidly rising cost of fertilizers, has increased interest in biological cycling of P from sources such as crop residues. However, to date, much of the Australian research has focussed on soils with relatively high organic matter content (> 2%) and relatively heavy texture i.e. medium to high clay content. Furthermore, although there is information on pasture residue decomposition and P release for sandy soils with low organic matter in Australia, a recent shift to continuous cropping systems means that information for a range of crop residues is required but is not currently available. Therefore the aims of the work described in this thesis were to (i) increase the efficiency of P use when crop residue P are applied to crops and (ii) determine the effect of crop residue biochemical quality on decomposition rates, soil P dynamics and plant P uptake in light textured sandy soils with low organic matter which are typical of a large proportion of the southern Australian wheat growing area. A further aim was to investigate the effects of combined additions of plant residue and P fertilizer on P cycling in these soils, a scenario highly relevant to farming systems. A series of soil incubation and plant growth experiments were undertaken to characterize P dynamics in soil following addition of a wide range of crop residues (total 15) collected from agricultural sites throughout South Australia. The residues, differing in age and biochemical quality, were young shoots of canola, lupin, pea, lucerne and lentil; mature shoot residues of canola, lupin, pea and wheat and mature root residues of wheat, canola and lupin. The concentration of total and water soluble P, C, and N in the residues was measured using standard wet chemical analyses and the carbon chemistry was determined by NMR spectroscopy. Decomposition of crop residues was continuously monitored over a period of up to 140 days by measuring soil respiration. Available P and microbial biomass P and C were also assessed at different times during the incubations. The total P in residues ranged from 0.16% to 0.32% and 0.05% to 0.08% in young and mature shoots, respectively. Water-soluble P was related to residue total P and ranged from 29% to 81% and 13% to 29% of total P in young and mature shoots, respectively. The C: P ratio ranged from 133: 1 to 253: 1 and 504: 1 to 858: 1 in young and mature shoots, respectively. Phosphorus availability and microbial P uptake differed between soils amended with crop residues and soluble P fertilizer as triple super phosphate (TSP). Soil respiration rates were significantly higher in soils amended with crop residues than in the soils amended with TSP or the unamended control in the first 58 days of incubation. In an experiment in which residues and TSP were added at a rate of 10 mg P kg⁻¹, available P was greater for TSP than residue-amended soil, whereas microbial P showed the opposite trend. Respiration rate and microbial P were positively correlated with C addition rate, which was highest in mature wheat residue because it had the lowest P concentration. In order to assess when P released from the residues is available for plants, wheat was grown over three consecutive crop periods with each period lasting for 4 weeks. Young residues with high content of water soluble P, C, N and amide and low lignin and phenolic content decomposed faster than mature residues. The C type and amount added with residues controlled the dynamics of P availability. Surprisingly, canola mature root increased available P and plant growth as much as young shoot residues while root residues of wheat and lupin resulted in P immobilization and low plant growth. Compared to canola young shoot, canola mature root has a higher total P concentration and a lower C: P ratio. Plant P uptake was positively correlated with residue total and water-soluble P content and negatively correlated with residue C: P and C: N ratio and amount of C added with the residues. In another experiment where residue was added at 2.5 g C kg⁻¹ soil and compared with TSP (4 and 10 mg P kg⁻¹ soil), available P and plant P uptake decreased in the following order: TSP-10P > canola root ≥ young shoot ≥ TSP-4P > control > mature shoot. Microbial P was greater with residue addition than with TSP and in the control. Residues with low total P and high C: P ratio resulted in P immobilisation in the microbial biomass. Therefore, residues with high total P and low C: P ratio can be an important source of P for plants. Net P immobilisation of mature wheat residues (0.07% P) was significantly reduced by combining wheat residue (C: P ratio 615: 1) with TSP leading to a C: P ratio of 155: 1 to 310: 1. Furthermore, the combination of wheat residue with TSP increased available P in residue and TSP-amended soils by 3.0 mg P kg⁻¹ soil, which was shown to be sufficient to support wheat growth in the early stages of development in the other experiments. Although water-soluble P fertilizers provide plants with immediately available P, a large proportion becomes unavailable over time. Addition of low C: P residues on the other hand, may not result in high amounts of immediately available P, but the P supply is more sustained due to P release from decomposing residues and turnover of microbial biomass P. Phosphorus immobilization after addition of residues which have high C: P ratio (615: 1) may be offset when residue is applied together with inorganic P fertilizer if the resulting C: P ratio is 300: 1 or less. Overall, this study has highlighted the potential role that crop residues, either alone or in combination with inorganic P, can play in increasing P availability in the light textured, low organic matter, P-limited soils typical of many southern Australian farming systems. The results provide important quantitative information on the potential of a wide range of crop residues to supply wheat with P, and how additions of inorganic P interact with residue decomposition and influence available P supply. This quantitative information will be valuable for the construction or validation of mechanistic models of residue decomposition relevant to low organc matter light textured soils in farming systems of southern Australia, and will ultimately assist in the development of economic management strategies for minimizing P fertilizer inputs and maximizing the benefits of biological cycling of P. / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2009
106

Rhizosphere processes influencing soil and fertilizer phosphorus availability to Pinus radiata : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand

Liu, Qianhe January 2005 (has links)
Production of Pinus radiata is a major contributor to New Zealand's economy and new plantings are a valuable carbon sink. Phosphorus (P) deficiency and high P fixing capacity of some volcanic ash soils (e.g. Allophanic Soil) may constrain radiata productivity. This thesis investigates the role of ectomycorrhizal (ECM) root processes in the acquisition of P by P. radiata fiom native soil and soil fertilised with two reactive phosphate rock (RPR) fertilisers. The application of finely-divided RPRs to a P deficient Allophanic Soil significantly increased P. radiata seedling growth and P uptake in 10 month pot trials. RPR dissolution was high in this soil, and it was further enhanced by the radiata rhizosphere processes. The development and formation of ECM in radiata seedlings was stimulated by low rates of RPR application but was hindered in unfertilised soils and high rates of RPR application. The P. radiata ECM roots induced acidification and increased oxalate concentration and phosphatase activities in the rhizosphere soil. These changes in rhizosphere biochemical properties were associated with enhanced solubilisation of fertiliser and soil inorganic P and increased mineralisation of organic P, leading to increased P bioavailability in the rhizosphere. ECM inoculation of P. radiata roots with Rhizopogen rubescens and Suillus luteus stimulated production of phosphatase enzymes and oxalate and induced acidification in the rhizosphere. The extent of root-induced changes in the rhizosphere soils was associated with ECM hyphae length density. A technique using pulse labelling of radiata shoots with 14CO2 showed promise in estimating the active ECM hyphae density. The 14C activity was highly correlated with ECM hyphae density measured by an agar film technique. Overall, observations made in this thesis indicate that sparingly soluble forms of organic and inorganic P in soils low in plant-available P are readily solubilised and utilised for P. radiata growth through ECM rhizosphere processes.
107

Effect of variable rates of cattle and poultry manure-based phospho-composts on growth, yield and quality of potato (Solanum tuberosum L.)

Mmadi, Mashupyane Josephine January 2019 (has links)
Thesis (M.Sc. (Soil Science)) -- University of Limpopo, 2019 / Phosphorus (P) deficiency has been reported in 30- 40% of global arable land, which poses a huge threat in potato production because of its critical role in the early vegetative development and tuber formation. The use of low cost ground phosphate rock (GPR) as an alternative P fertilizer source has gained recognition. Although GPR contains high P percentage, its direct application is less beneficial immediately due to its low reactivity which makes P unavailable for plant uptake. In this experiment, GPR was co-composted with cattle and poultry manure in order to enhance P acquisition by the potato crop. The aim of this study was to evaluate the potential of phosphocompost application as a cheaper alternative P-source for potato production. The experiment was conducted on Mondial and Valor… potato cultivars at the University of Limpopo Syferkuil Experimental farm in 2015 and 2016. Poultry (PM) and cattle manure (CM)-based phospho-compost mix ratios of 8:2 and 7:3 were applied at 0, 20, 40, 80 and 120 kg P/ha. The trial was laid out in a split plot arrangement fitted into a randomised complete block design with treatments replicated three times. Results indicated statistically significant effects of phospho-compost types on soil pH and available P content at both flowering and harvesting growth stages in 2015 and 2016 with the higher available P content found in the PM-based phospho-composts. In both seasons, highly significant differences in fresh and dry leaf samples among phospho-compost types were obtained. Highly significant season x compost type interaction effects were also recorded on leaf biomass as well as the 2015 tuber weight, with highest tuber weight obtained in plots that received PM7:3-based phospho-compost at 80 t/ha rate. Notwithstanding the non-significant effect of compost type on tuber yield in 2016, higher yield was obtained from PM8:2. Although the grading of tubers showed no significant response to phospho-compost application; the difference between small and medium tubers obtained from 2016 trial was significantly affected by phosphocompost application rates. The CM8:2 mix ratio gave the highest baby tubers (16.87%) while PM7:3 mix ratio gave the highest (36.32%) medium tubers. The grading of the potato tubers revealed a mostly class 1 dominated by baby, small and medium size tubers in the 2015 harvest while the 2016 harvest was also mostly class 1 but dominated by small, medium and large-small size tubers. Tuber size and class were vi most favored by the PM-based phospho-compost applications in both planting seasons. None of phospho-compost types and application rates had significant effect on the measured nutrient concentrations of both plant parts. However, the differences in nutrient concentrations across seasons and plant parts were significant except for Ca. The measure tissue P concentration from the 2016 trial was within the required range suggesting that phospho-compost utilization, particularly the poultry manure-based, in potato production can be beneficial in addressing P deficiency. The PM8:2 mixed ratio resulted in increased soil available P content, potato tuber yield in 2016 and the P concentration across the two plant parts evaluated. The concentration of soil available P and tissue P showed increases with higher application rates albeit non-significance. Future research on the optimum application rate is suggested on a wide range of soils for the various phospho-compost types. / Potato SA and the National Research Foundation (NRF)

Page generated in 0.041 seconds