• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 12
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 107
  • 103
  • 33
  • 22
  • 17
  • 16
  • 16
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Evaluation of struvite from source-separated urine as a phosphate fertilizer.

Nongqwenga, Nqaba. January 2013 (has links)
The potential shortage of phosphorus (P) fertilizer is a threat to food security and closing the nutrient loop through recycling human excreta, especially urine, has been considered, so as to mitigate this crisis. Struvite (magnesium, ammonium phosphate), a material derived from human urine, is a product which is gaining credence with regards to using urine as a P amendment since more than 90% of P in urine can be captured during struvite production. A study to evaluate the potential of struvite as a P amendment in three contrasting soils was conducted. The soils used were an A horizon of Inanda (Ia), A horizon Sepane (Se) and an E horizon of Cartref (Cf). Phosphate adsorption properties of the soils were studied and the Freundlich model used to derive sorption parameters. From these studies, Pmax was related to the Kf parameter of the Freundlich equation. Two sets of incubation studies were then conducted. The first ran for 122 days and the second for 22 days to examine in closer detail the early stages of dissolution of the struvite as the major P release occurred during this time period of the incubation. A pot experiment was conducted in a controlled environment so as to determine the effect of P released from struvite on maize growth. The Ia, with high content of iron and aluminum oxides, displayed high sorption and affinity for P, whereas soil texture was a principal factor in the sorption properties of the Se (clayey) and Cf (sandy). The Kf decreased in the order Ia > Se > Cf and external P requirements decreased in the order Se > Ia > Cf. In the incubation studies solution P content increased with an increase in application rate of struvite. Struvite dissolution and P release varied between the different soils and the dissolution was found to be related to the P adsorption maximum of each individual soil and soil pH. The magnesium content also increased with time. In the glasshouse study, drymatter yield after six weeks growth was improved by the addition of struvite. There were no benefits achieved by using more than the recommended application rates for each soil. Struvite was as effective as conventional single superphosphate in the Ia and Cf, while superphosphate outperformed struvite on the Se. The findings of this study suggest that struvite has the potential to release P in an available form although its effectiveness and capability to release P could depend on soil pH, exchangeable acidity and initial P levels. Further research needs to focus on the effect of pH on struvite dissolution, the effect of struvite on soil pH, as well as comparison of nutrient release patterns between struvite and rock phosphate. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
92

Effects of phosphorus fertilization on growth and survival of Liatris pycnostachya, Physostegia virginiana, and Sporobolus heterolepis seedlings in a prairie restoration project

Bernd-Steffes, Dawn E. January 2000 (has links)
The effects of phosphorus fertilization on the growth and survival of Liatris pycnostachya, Physostegia virginiana, and Sporobolus heterolepis seedlings were examined in a prairie restoration project. Treatment included fertilizing once at the time of planting. Plant responses were measured on two soil types, Bono (very high phosphorus levels, lower and flatter) and Morley (very low phosphorus levels, on a slight hill with some slope). P fertilization did not increase the growth of any species on either soil type, although results may have been limited by the effects of surrounding plant competition. Only one significant difference in plant growth was observed between fertilized and unfertilized plots; control Liatris pycnostachya and Physostegia virginiana in the Bono soils produced more shoots than fertilized plants of the same species. P- fertilized Liatris pycnostachya in Morley soil had significantly higher survivorship than unfertilized plants. In contrast, P-fertilized Physostegia virginiana in the Bono soil had the significantly lower survivorship than unfertilized plants. For the other species on either soil type, the survivorship was not significantly different. Because P-fertilization produced very limited benefit, and even adverse plant responses in some cases, the recommendation of this study is that P-fertilization should not be applied at the time of planting of prairie restoration projects. / Department of Biology
93

Transformation of inorganic phosphorus in manure during incubation and its effects on phosphorus availability to corn (Zea mays L.) on some soils of southern Quebec.

DuPlessis, Gaetan. January 1981 (has links)
No description available.
94

Nutrient management on golf courses in Delaware

Sprinkle, Amy Lyn. January 2005 (has links)
Thesis (M.S.)--University of Delaware, 2005. / Principal faculty advisor: Gregory D. Binford, Dept. of Plant & Soil Sciences. Includes bibliographical references.
95

Enhancing phosphorus availability in some phosphate fixing soils of the Transkei region, South Africa using goat manure

Gichangi, Elias Maina January 2007 (has links)
Low availability of soil phosphorus (P) caused by strong sorption of P is a major constraint to agricultural production in most South African soils, particularly those from the high rainfall areas. The aim of this study was therefore to investigate whether combined addition of goat manure with inorganic P fertilizers could enhance P availability in some P fixing soils of the Transkei region, South Africa. The study addressed the following specific objectives (i) to assess P sorption capacities and requirements of selected soils and their relationship with selected soil properties and single point sorption test, (ii) to assess the effects of goat manure and lime addition on P sorption properties of selected P fixing soils (iii) to assess the temporal changes in concentration of inorganic and microbial biomass P fractions following application of inorganic fertilizer P with goat manure in a laboratory incubation experiment, and, (iv) to assess the effects of goat manure application with inorganic phosphate on inorganic and microbial biomass P fractions, P uptake and dry matter yield of maize. Sorption maxima (Smax) of seven soils examined ranged from 192.3 to 909.1 (mg P kg-1) and were highly and positively correlated with sorption affinity constant (r = 0.93, p = 0.01) and organic C (r = 0.71, p = 0.01). The amount of P required for maintaining a soil solution concentration of 0.2 mg P l-1 ranged from 2.1 to 123.5 mg P kg-1 soil. Soils collected from Qweqwe (a Cambisol), Qunu (an Acrisol), Ncihane (a Luvisol) and Bethania (a Ferralsol) had lower external P requirement values and were classified as lower sorbers, whereas soils from Ntlonyana (a Planosol), Chevy Chase (a Ferralsol) and Flagstaff (a Ferralsol) were classified as moderate sorbers. The results suggested that P availability could be compromised in 43 percent iii of the soils studied and that measures to mitigate the adverse effects of P sorption were needed to ensure that P is not a limiting factor to crop production, where such soils are found. Goat manure addition at varying rates (5, 10 and 20 tha-1 dry weight basis) to two of the moderately P fixing soils from Chevy Chase and Flagstaff, reduced P sorption maxima (Smax) compared to the control treatment. Phosphate sorption decreased with increasing amounts of goat manure in both soils but the extent of reduction was greater on Chevy Chase soil than on Flagstaff soil. The relative liming effects of the different rates of goat manure followed the order 20 t GM ha-1 > 10 t GM ha-1 > 5 t GM ha-1. In a separate experiment, addition of inorganic P at varying rates (0, 90, 180, and 360 kg P ha-1) to Flagstaff soil increased labile P fractions (resin P, biomass P and NaHCO3-Pi) and the increases were greater when goat manure was co-applied. The control treatments contained only 17.2 and 27.5 mg P kg-1 of resin extractable P in the un-amended and manure amended treatments, respectively which increased to 118.2 and 122.7 mg P kg-1 on day 28 of incubation. Biomass P concentration was increased from 16.8 to 43.9 mg P kg-1 in P alone treatments but the fraction was greatly enhanced with manure addition, increasing it from 32.6 to 97.7 mg P kg-1. NaOH-Pi was the largest extractable Pi fraction and ranged from 144.3 to 250.6 mg P kg-1 and 107.5 to 213.2 mg P kg-1 in the unamended and manure amended treatments, respectively. Dry matter yield and P uptake by maize grown in the glasshouse were highly and significantly (p = 0.05) correlated with the different P fractions in the soil. The correlations followed the order resin P (r = 0.85) > NaOH-Pi (r = 0.85) > NaHCO3-Pi (r = 0.84) >> biomass P (r = 0.56) for dry matter yield at 6 weeks after planting. At 12 weeks after planting, goat manure had iv highly significant effects on resin P and biomass P but had no effect on NaHCO3-Pi and NaOH–Pi. The combination of biomass P, resin P and NaHCO3-Pi explained 75.8 percent of the variation in dry matter yield of which 63.0 percent of the variation was explained by biomass P alone. The greatest increase in biomass P occurred when added P was co-applied with 5 or 10 tha-1 goat manure. The predictive equation for maize dry matter yield (DM) was: DM (g) = 1.897 biomass P + 0.645 resin P (r = 0.73). Resin P was the fraction that was most depleted due to plant uptake and decreased by 56 to 68 percent between the 6th week and the 12th week of sampling indicating that it played a greater role in supplying plant available P. The results therefore suggested that the use of goat manure may allow resource poor farmers to use lower levels of commercial phosphate fertilizers because of its effect to reduce soil P sorption. In addition, higher increases in biomass P due to manure addition observed at lower rates of added P indicated that goat manure has potential for enhancing bioavailability and fertilizer use efficiency of small inorganic P applications.
96

The effect of phosphorus fertilizer and bradyrhizobium innoculation on grain yield and nutrients accumulation in two chickpea (Cicer aritienum L.) genotypes

Madzivhandila, Vhulenda 07 1900 (has links)
MSCAGR / Department of Plant Production / Chickpea (Cicer aritienum L.) is an ancient crop that originated in South-Eastern Turkey and belongs to the genus Cicer, tribe Cicereae, and family Fabaceae. Chickpea has the ability to fix atmospheric nitrogen (N) for its growth. However, chickpea productivity not only depends on N2 fixation or dry matter accumulation, but also the effectiveness of nutrient partitioning to seed, a key component to overall yield. There is a dearth of information on the effect of P with rhizobial inoculation in response of nutrients accumulation in the rhizosphere, shoots and grain of chickpea, especially when determined at different growth stages in the African continent. This study contributes knowledge on this crucial aspect which will likely lead to more other similar research reports in other settings. Therefore, the objectives of this study was to evaluate the effect of P fertilizer rates and rhizobial inoculation on yield and nutrients accumulation in two chickpea genotypes. Field experiments were conducted in winter 2017 and 2018 at University of Venda, Thohoyandou and University of Limpopo’s experiment farm, Syferkuil. Treatments consisted of a factorial combination of two rates of P fertilizer (0 and 90 kg P ha-1), two desi chickpea genotypes (ACC1 and ACC5) and two rhizobial inoculation levels (with and without rhizobiam strain). The treatments were laid out in a randomized complete block design (RCBD) and replicated three times on 22 April 2017 and 11 April 2018 (Syferkuil), 13 April 2017 and 29 April 2018 (Thohoyandou). Macronutrients including P, K, Ca, Mg were determined using the citric acid method. The total N concentration were determined by the micro-Kjeldahl method in both soil, shoots and grain. Zn was extracted using a di-ammonium ethylenediaminetetraacetic acid (EDTA) solution. The content of macronutrients (P, K, Ca, Mg, Ca, and Zn) in soil, shoots and grain was determined by first subjected to wet digestion (Mehlich, 1984). From the digest, various elements were read using relevant procedures. P contents was determined colorimetrically using a spectrophotometer. Yield and yield components were assessed at harvest maturity. Genotypes affected the accumulation of mineral elements in rhizosphere soil, shoots, grain and yield. Accession 5 performed better in most of nutrients elements compared to accession 1 in both seasons and sites. Application of phosphorus alone, and in combination with rhizobium inoculation increased the concentration of majority of nutrients in the rhizosphere. When the test accessions were grown at the Syferkuil and Thohoyandou study location in 2017, they showed significant differences in the concentration of N, P and K while Ca, Mg and Zn were similar in the rhizosphere. The concentrations of N, P and K were markedly higher in the rhizosphere of ACC5 compared to ACC1. In fact, the concentration of P was two-fold greater in the rhizosphere of ACC5 than ACC1. Accession 5 exhibited a markedly higher shoot dry weight, number and dry weight of pods, 100-seed weight, grain yield and harvest index compared to ACC1. P plus rhizobium inoculation, P, rhizobium inoculation affected grain yield and yield components of chickpea genotypes. This preliminary finding show that the combination of P and rhizobium inoculation affected the nutrients accumulation in the rhizosphere, shoots, grain, yield and yield components in both locations. Moreover, Thohoyandou had the highest nutrients accumulation on the rhizosphere, shoots, grain, yield and yield components compared to Syferkuil. / NRF
97

Phosphorus fertilization and mycorrhizae influence soil phosphorus dynamics, corn nutrition and yield under reduced-tillage practices

Landry, Christine. January 2009 (has links)
No description available.
98

Transformation of inorganic phosphorus in manure during incubation and its effects on phosphorus availability to corn (Zea mays L.) on some soils of southern Quebec.

DuPlessis, Gaetan. January 1981 (has links)
No description available.
99

The effect of fertilizers on the calcium and phosphorus content of clippings of pasture grasses

Webb, T. W. January 1930 (has links)
M.S.
100

The root system of vines on a fertilization experiment with special reference to the phosphate status of the soil

Vink, J. De M. January 1955 (has links)
Thesis (MScAgric)--University of Stellenbosch, 1955. / No Abstract Available

Page generated in 0.0844 seconds