• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 12
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulating, fabricating and characterising photoconductive microwave switches for RF applications

Kowalczuk, Emma K. January 2014 (has links)
Photoconductive microwave switches can be used in place of traditional microwave switches to reconfigure antennas and RF circuits. The switch, which consists of a silicon die placed over a gap in transmission line, is controlled by illumination via a fibre optic cable. Hence there is no requirement to design electrical biasing lines which may affect RF performance. This benefit is the main motivation behind further developing and understanding the photoconductive switch. The second motivation is the growing demand for reconfigurable antennas which necessitate certain switching requirements; one specific area of interest is in cognitive radio applications. However, in order to use such a switch in RF circuitry, the photoconductive nature of the switch must be understood. This is addressed in this thesis presenting and applying analytical equations which dictate the material properties in photoconductive silicon. These equations are then used to generate a 3D EM simulation model to investigate transmission loss in the photoconductive switch. The concept of signal planarity is investigated so as to give some insight into the best way to package the switch. In order to potentially reduce loss and facilitate a packaged device, the fabrication of the switch is investigated. Namely, the treatment of the silicon and the addition of contacts on the silicon are discussed as possible methods to improve switch performance. Lastly, linearity, power handing and switching times are presented for the photoconductive switch. This characterisation is important with regards to understanding which types of application the switch can be used in. In particular the single tone and two tone linearity of the switch is measured these values have not previously been reported for this type of photoconductive switch. The results are encouraging and support further development of the switch into a packaged product to be used in reconfigurable antennas and circuitry.
12

Design, fabrication and evaluation of a (Hg,Cd)Te junction field-effect photoconductor

Kessler, Daniel Dean January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Daniel Dean Kessler. / M.S.
13

Monte Carlo Modeling of Carrier Dynamics in Photoconductive Terahertz Sources

Kim, Dae Sin 23 June 2006 (has links)
Carrier dynamics in GaAs-based photoconductive terahertz (THz) sources is investigated using Monte Carlo techniques to optimize the emitted THz transients. A self-consistent Monte Carlo-Poisson solver is developed for the spatio-temporal carrier transport properties. The screening contributions to the THz radiation associated with the Coulomb and radiation fields are obtained self-consistently by incorporating the three-dimensional Maxwell equations into the solver. In addition, the enhancement of THz emission by a large trap-enhance field (TEF) near the anode in semi-insulating (SI) photoconductors is investigated. The transport properties of the photoexcited carriers in photoconductive THz sources depend markedly on the initial spatial distribution of those carriers. Thus, considerable control of the emitted THz spectrum can be attained by judiciously choosing the optical excitation spot shape on the photoconductor, since the carrier dynamics that provide the source of the THz radiation are strongly affected by the ensuing screenings. The screening contributions due to the Coulomb and radiation parts of the electromagnetic field acting back on the carrier dynamics are distinguished. The dominant component of the screening field crosses over at an excitation aperture size with full width at half maximum (FWHM) of ~100 um for a range of reasonable excitation levels. In addition, the key mechanisms responsible for the TEF near the anode of SI photoconductors are elucidated in detail. For a given optical excitation power, an enhancement of THz radiation power can be obtained using a maximally broadened excitation aperture in the TEF area elongated along the anode due to the reduction in the Coulomb and radiation screening of the TEF.
14

Development Of A Compact Time-domain Terahertz Spectrometer Using Photoconductive Antenna Detection Method

Erozbek Gungor, Ummugul 01 February 2009 (has links) (PDF)
In this thesis, we describe the development of a time-domain terahertz (THz) spectrometer driven by two different laser sources: an Er-doped femtosecond fiber laser and a mode-locked Ti:Sapphire laser. The resulting THz electromagnetic radiation was generated and detected using photoconductive antenna detection methods in both systems. In these experiments we characterized the THz power output for both the fiber laser driven system and the Ti:Sapphire laser driven system. Emphasis is given throughout this thesis on understanding the working principles behind time-domain terahertz spectroscopy, applications of THz radiation and terahertz generation as well as terahertz detection methods. We calculated the THz power output using two different methods. By using the &ldquo / Hertzian Dipole&rdquo / method we estimated the generated THz power after the generation photoconductive antenna. Using this method, we showed that the v generated power is on the order of milliwatts, which is far larger than the expected power typical for these systems. The second, &ldquo / Open-Circuit Voltage&rdquo / method, allowed us to calculate the received power on the detection photoconductive antenna. Using this method we were able to show that the THz power generated and detected in these systems is on the order of microwatts. For the mode-locked fiber laser driven spectrometer we obtained on average a ~ 4 ps (0.25 THz) pulse length which corresponded to an average power in the range of 71.8 nW - 70.54 &amp / #956 / W on a dipole antenna with a 6 &amp / #956 / m dipole gap and 44 &amp / #956 / m dipole length. Using the mode-locked Ti:Sapphire laser driven spectrometer we observed a ~ 2 ps (0.5 THz) pulse length and average power in the range of 0.54 nW &ndash / 5.12 &amp / #956 / W on a different dipole antenna with a 5 &amp / #956 / m gap and 40 &amp / #956 / m dipole length. Since these values agree with expected values for these systems we believe the &ldquo / Open-Circuit Voltage&rdquo / method is appropriate when trying to calculate the THz power.
15

Enhancing terahertz photoconductive switches using nanotechnology

Heshmat Dehkordi, Barmak 27 March 2013 (has links)
In this thesis we use three main approaches to enhance the performance of terahertz photoconductive switches (THz PC switches). We first propose two novel materials (GaBiAs and carbon nanotubes) for the substrate. The resulting enhancement in THz emission and reception are significant for GaBiAs. As thoroughly analyzed and addressed in Chapter 2, both the emission bandwidth and the emission amplitude of the device are improved by these materials. A systematic study of CNTs predicts 2 orders of magnitude enhancement in THz emission and one order of magnitude enhancement in THz reception. Experimental results for GaBiAs indicate 0.5 THz increase in bandwidth and 68% increase in the emitted THz wave amplitude. The bandwidth enhancement is in comparison to premium commercial devices. The optical excitation of the PC switch is studied and optimized next as the second enhancement approach (Chapter 3). The study presented in Chapter 3 provides an insight on the subwavelength dynamics of the optical excitation E-field at the edge of the electrodes. The study reveals that majority of the fast photocarriers are collected at the edge of the electrode in a subwavelength scale area. This insight leads to optimization of illumination profile and also the third enhancement approach, namely, the enhancement of electrode structure (Chapter 4). In Chapter 4 we have engineered the electrodes down to nanometer scale. This significantly enhances the optical excitation of the substrate and also overcomes the undesired properties of some substrate materials such as long carrier lifetime. Fabricated devices and fabrication processes are assessed in Chapter 5. Results (Chapter 6) highlight more than two orders of magnitude enhancement for nanostructures on GaAs. / Graduate / 0544
16

Charge transfer efficiency and optical properties of P3HT/PCBM spin coated thin films

Van Heerden, Brian Abraham January 2009 (has links)
>Magister Scientiae - MSc / The efficiency of organic photovoltaics is influenced by the structure of the polymer, the morphology of the film, the interfaces between the layers, the choice of electron acceptor material and the ratio between the electron acceptor material and the polymer. In this project, we have used regioregular poly (3-hexylthiophene) (rr-P3HT) as the electron donor material and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a derivative of the C60 fullerene, as the acceptor material. Different weight-ratios of rr-P3HT to PCBM were prepared by stirring for several hours in a chloroform solution and subsequently spin coated onto crystalline silicon and transparent conductive oxide/glass substrates. The effect of the PCBM concentration on the photo-induced optical emission and absorption properties of rr-P3HT was investigated by photoluminescence and ultraviolet-visible spectroscopy, respectively. Changes in the structural properties, as a function of the weight-ratio, were probed by high-resolution transmission electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy. Results show that the structural integrity and crystallinity of rr-P3HT is compromised with the addition of excessive amounts of PCBM, which has a negative impact on the optical absorption of rr-P3HT and the photo-induced charge transfer mechanism between the rr-P3HT and PCBM. This work illustrates that blending rr-P3HT with an equal weight of PCBM results in an optimum configuration for improved performance in organic photovoltaic devices.
17

Advanced emitters and detectors for terahertz time-domain spectroscopy

Peter, F. January 2010 (has links)
The idea of terahertz-time-domain spectroscopy (THz-TDS) is to exploit a single cycle, spectrally broad THz radiation pulse to gain insight into the response of matter. Photoconductive devices and nonlinear crystals are utilized in both the generation as well as the coherent detection of THz radiation. The relatively high cost and the complexity of commonly used titanium-sapphire lasers hinder a more widespread use of pulsed THz systems for commercial applications. Er-doped femtosecond fiber lasers operating at 1.55 μm could offer a viable alternative. In this thesis nonlinear crystals and photoconductive emitters are discussed for excitation in the near infrared (NIR) window of between 800 nm to 1550 nm. The main focus of this thesis is a detailed study of substrate materials for an interdigitated photoconductive antenna. Photoconductive antennas with microstructured electrodes provide high electric acceleration fields at moderate voltages because of small electrode separations. The scalability of these devices allows for large active areas in the mm^2 range, which are sufficient for excitation at large optical powers. In comparison with conventional emitter structures, these antennas have more favourable characteristics regarding THz power, spectral properties, and ease of handling. Depending on the utilized substrate material, photoconductive antennas can then be operated using different excitation wavelengths. By employing substrates with short carrier trapping times these antennas can be operated as THz-detectors. Moreover the design of electrode structures for generating radially and azimuthally polarized THz waves are presented. A second topic deals with the signal analysis and signal interpretation of THz pulses transmitted through several material systems. These experiments show the potential for tomographic and spectroscopic applications. The third part deals with THz emission by frequency mixing in nonlinear organic and inorganic crystals. Hereby the focus is on polaritonic phase matching in GaAs. Furthermore, indications of THz tunability by the excitation wavelength were found by utilizing waveguide structures. However, the observed tuning range is much lower then theoretically predicted. Specific reasons for this are discussed.
18

Design and Implementation of Transmission-Modulated Photoconductive Decay System for Recombination Lifetime Measurements

Erdman, Emily Clare January 2016 (has links)
No description available.
19

Wave Chaos and Enhancement of Coherent Radiation with Rippled Electrodes in a Photoconductive Antenna

Kim, Christopher Yong Jae January 2016 (has links)
Time-domain terahertz spectroscopy is now a well-established technique. Of the many methods available for a terahertz source for terahertz spectroscopy, the most widely used may be the GaAs-based photoconductive antenna, as it provides relatively high power at terahertz frequencies, commercially available up to 150 µW, and a wide-bandwidth, approximately 70 GHz to 3.5 THz. One of the limitations for developing more accurate and sensitive terahertz interrogation techniques is the lack of higher power sources. Because of our research interests in terahertz spectroscopy, we investigated detailed design and fabrication parameters involved in the photoconductive antenna, which exploits the surface plasma oscillation to produce a wideband pulse. The investigation enabled us to develop a new photoconductive antenna that is capable of generating a high power terahertz beam, at least twenty times stronger than those currently available. Throughout this research, it was discovered that antenna electrodes with particular geometries could produce superradiance, also known as the Dicke effect. Chaotic electrodes with a predisposition to lead charge-carriers into chaotic trajectories, e.g. rippled geometry, were exploited to reduce undesirable heat effects by driving thermal-electrons away from the terahertz generation site, i.e. the location of the surface plasma, while concentrating the removed charge-carriers in separate locations slightly away from the surface plasma. Then, spontaneous emission of coherent terahertz radiation may occur when the terahertz pulse generated by the surface plasma stimulates the concentrated carriers. This spontaneous emission enhanced the total coherent terahertz beam strength, as it occurs almost simultaneously with the primary terahertz beam. In principle, the spontaneous emission power increases as N^2, with the number N of dipole moments resulted from the concentrated charge carriers. Hence, if the design parameters are optimized, it may be possible to increase the strength of coherent terahertz beam by more than one order of magnitude with a photoconductive antenna containing rippled electrodes. However, as the parameters are yet to be optimized, we have only demonstrated 10-20 % enhancement with our current photoconductive antennas. Photoconductive antennas were fabricated via photolithography and characterized by time-domain terahertz spectroscopy and pyroelectric detection. In addition to chaotic electrodes, a variety of other parameters were characterized, including GaAs substrate thickness, GaAs crystal lattice orientation, trench depth for electrodes, metal-semiconductor contact, and bias voltage across electrodes. Nearly all parameters were found to play a crucial role influencing terahertz beam emission and carrier dynamics. By exploiting wave chaos and other antenna parameters, we developed a new photoconductive antenna capable of continuous operation with terahertz power twenty times larger than that of the conventional photoconductive antennas, improving from 150 µW to 3 mW. With further optimizations of the parameters, we expect more dramatic improvement of the photoconductive antenna in the near future. / Physics
20

Spectroscopie Térahertz Ultrarapide et Propriétés Optiques Non-Linéaires de Nanostructures Semiconductrices

Zhao, Zhen-Yu 17 July 2008 (has links) (PDF)
Ce mémoire de thèse présente deux études expérimentales dans le domaine de la dynamique ultra-rapide des porteurs dans les nanostructures semiconductrices: <br />1. Le développement de la spectroscopie Térahertz dans le domaine temporel (THz-TDS) et son utilisation pour mesurer le gain d'un laser à cascade quantique GaAs/AlGaAs.<br />2. L'étude des effets de 3ième ordre en optique non linéaire dans des verres de Tellure dopés en nanocristaux AgCl, par "Z-scan" et mélange à quatre ondes (DFWM). <br />A cette fin, nous avons d'abord construit un montage de spectroscopie Térahertz dans le domaine temporel avec deux sources de rayonnement différentes : la rectification optique dans un cristal non-lineaire <110> ZnTe et par ailleurs des antennes interdigités photoconductrices. <br />Dans un premier temps, nous avons étudié la compétition entre la rectification optique, la génération de second harmonique, l'absorption à deux photons, et l'absorption par les porteurs libres. Le faisceau pompe subit une absorption à deux photons et le rayonnement THz émis est diminué, dans les conditions de focalisation, par l'absorption des porteurs libres. La réduction de l'émission THz dans les conditions de focalisation est expliquée, à condition de tenir compte des effets de la diffraction de la source THz sub-longueur d'onde. <br />Dans un deuxième temps, nous avons étudié les propriétés de l'émission THz dans le domaine temporel et spectral d'un nouveau type d'antenne photoconductive interdigitée basée sur du GaAs semi-isolant, en fonction de la densité de porteurs et dans une gamme de température allant de 4.2K à 270K. Les propriétés de l'émission THz sont linéaires pour de faibles tensions appliquées mais révèlent des effets de saturation pour des tensions importantes en raison de la diffusion inter-vallées de la bande Γ à la bande L. Les performances THz saturent aussi pour de fortes excitations laser à raison de l'écrantage des charges. La dynamique des porteurs à été étudiée expérimentalement pour différentes températures. Le spectre THz de l'émission se déplace vers les basses fréquences lorsque la température augmente. L'influence de la mobilité électronique est discutée.<br />Dans une troisième partie, après avoir comparé les deux méthodes de génération THz ci-dessus et décidé d'utiliser les antennes photoconductives comme source d'excitation pour notre montage THz-TDS, nous avons étudié le gain et les pertes d'un laser à cascade quantique (LCQ) fonctionnant à 2.9 THz. Nous avons étudié les variations du gain en fonction du courant injecté, à différentes températures. Nous avons mesuré les spectres d'amplitude et de phase THz, permettant une détermination directe du gain. A la fréquence de fonctionnement du LCQ, nous mesurons un gain de 6.5cm-1. Des effets comme le « clampage » du gain et l'affinement spectral du gain sont observés et discutés.<br />Pour finir, nous avons étudié le coefficient de polarisabilité d'ordre 3 des verres de Tellure (80TeO2-20Nb2O5) dopés en nanocristaux AgCl. Nous avons produit des échantillons par les techniques fonte-trempe et traitement thermique. Les résultats de la caractérisation révèlent qu'un traitement plus long augmente la tailles des nanocristaux qui donne lieu à l'apparition de plus de défauts et une plus grande déformation du réseau cristallin des nanocristaux aux interfaces avec le verre. Des états électroniques piégés apparaissent sous l'effet de la déformation de la structure cristalline. Une forte absorption à deux photons et une absorption des états électroniques piégés réduit le seuil de la limitation optique. Le coefficient polarisabilité non linéaire χ(3) augmente à cause de la formation des défauts et des états électronique localisés.

Page generated in 0.128 seconds