31 |
Synthesis of phthalocyanine photosensitizers for photodynamic therapy studiesLi, Ying-Syi January 1995 (has links)
No description available.
|
32 |
Phthalocyanines for Photodynamic TherapyLiu, Yun 27 July 2010 (has links)
No description available.
|
33 |
Application of Ru(II) polypyridyl Photoinduced Ligand Exchange and Singlet OxygenSensitization in Cancer TherapeuticsLanquist, Austin 29 September 2022 (has links)
No description available.
|
34 |
The contradictory role of febuxostat in ABCG2 expression and potentiating hypericin‐mediated photodynamic therapy in colorectal cancersKing, A., Maisey, T., Harris, E.L., Poulter, J.A., Jayne, D.G., Khot, Ibrahim 16 April 2025 (has links)
Yes / Photodynamic Therapy (PDT) is an emerging method to treat colorectal cancers (CRC). Hypericin (HYP) is an effective mediator of PDT and the ABCG2 inhibitor, Febuxostat (FBX) could augment PDT. HT29 and HEK293 cells showed light dependant cytotoxic response to PDT in both 2D and 3D cell models. FBX co-treatment was not found to improve PDT cytotoxicity. Next, ABCG2 protein expression was observed in HT29 but not in HEK293 cells. However, ABCG2 gene expression analysis did not support protein expression results as ABCG2 gene expression results were found to be higher in HEK293 cells. Although HYP treatment was found to significantly reduce ABCG2 gene expression levels in both cell lines, FBX treatment partially restored ABCG2 gene expression. Our findings indicate that FBX co-treatment may not be suitable for augmenting HYP-mediated PDT in CRC but could potentially be useful for other applications. / Royal Society International Exchanges Award (IEC\R3\203014) - UKRI EPSRC Research Programme Grant (753910/B19R13527) - Bowel Cancer UK/RCS Eng Colorectal Research Chair Award (18SC0001) / The full-text of this article will be released for public view at the end of the publisher embargo on 16 Apr 2025.
|
35 |
The Photochemical and Biological Activity of Novel Nitroxide-Containing PhotosensitisersNicole A Blinco Unknown Date (has links)
This PhD project has explored the use of novel nitroxide annulated porphyrinic macrocycles as photosensitisers (PSs) for photodynamic therapy (PDT). The PSs have been synthesised, structurally, photophysically and photochemically characterised and investigated biologically through cell assays to determine their potential as photoactivated anticancer drugs. Tetra-nitroxide annulated phthalocyanines (Pcs) were initially investigated. Each of these compounds exhibit four annulated nitroxide-containing rings in a rigid, planar arrangement with fixed distance and geometry with respect to the macrocycle core, which is a novel structural motif in Pc chemistry. The presence of the nitroxides purportedly has two effects: to quench fluorescence and to increase photochemical singlet oxygen production by the compound. While nitroxides, as paramagnetic compounds, are non-fluorescent, their reduction to diamagnetic hydroxylamines results in an increased fluorescence yield. In this way, the nitroxide Pcs can potentially be used as probes for metabolic activity in biological systems, where the primary fate of the nitroxide moiety is reduction. Here, the fluorescence properties of the nitroxide-annulated Pcs were investigated through reduction of the nitroxide moieties by biologically significant reductants and calculation of fluorescence quantum yields. The singlet oxygen quantum yields of the Pcs were determined by two methods, the chemical trapping of singlet oxygen and the direct observation of singlet oxygen luminescence. While the quantum yields of the Pcs were promising when compared to clinically relevant PSs, the tetra-nitroxide Pcs did not exhibit increased quantum yields with respect to their nitroxide-free analogues. Additionally, there was minimal photodynamic action in cell assays. Subsequent fluorescence microscopy confirmed that this was most probably due to the fact that the Pcs were not localising within the cells. To improve the photodynamic action of the Pcs, two polymer-based delivery strategies were employed to enhance their delivery in biological environments. Firstly, the nitroxide Pcs were coupled to linear polymers to create polymer Pc hybrids. The second method involved the encapsulation of the nitroxide Pcs within polymer-based micelles. The synthesis of the polymer Pc hybrids was via a fast and efficient Atom Transfer Nitroxide Radical Coupling (ATNRC) reaction. The hybrids were synthesised as Mg, Zn or free-base (2H) Pc complexes, with either hydrophobic or hydrophilic polymer arms. The hybrids displayed high fluorescence quantum yields and reasonable singlet oxygen quantum yields. Again, these attributes this did not extend to any cell growth inhibition, even for the hydrophilic derivatives. Micellisation of the Pcs with a poly(styrene)-poly(acrylic acid) (PSty-PAA) star diblock copolymer afforded micelles with a range of concentrations of Pcs encapsulated within the glassy PSty core. Fluorescence studies showed that the micelles protected the nitroxide moieties from reduction by ascorbate, a result that could find application in EPR imaging and oximetry. During singlet oxygen experiments, the micelles were found to perform as nanoreactors, supramolecular assemblies which provide a reaction volume for other reagents. Pcs in the micelle cores effectively generated singlet oxygen and while this failed to escape the micelles, it was very effective in the oxidation of a hydrophobic model compound. Although there are potential applications for the micelle systems in waste-water remediation, these systems were ineffective in the PDT assays. With the difficulties associated with the biological delivery of the nitroxide Pcs in mind, hydrophilic mono-nitroxide annulated porphyrazine (Pz) macrocycles were designed and synthesised. Pzs exhibit many of the favourable optical properties of the Pcs. Synthesis of these compounds proceeded via Linstead macrocyclisation to give the target MgPz with A3B type substitution. A nitroxide-free A4 Pz was also isolated as a side-product. Transmetallation and/or hydrolysis gave access to Mg and Zn A3B and A4 carboxylate Pzs. These compounds were structurally characterised and their fluorescence characteristics investigated. The 1O2 quantum yields of the Pzs were also studied. Significantly, nitroxide annulation was found to enhance 1O2 generation of the Pzs relative to nitroxide-free analogues. The Zn carboxylate Pzs were shown to effectively inhibit the growth of tumour cell lines in PDT assay and the MgA4 carboxylate displayed strong 2-photon fluorescence within the cytoplasm of NFF cells. Experiments on freshly excised skin showed the carboxylate Pzs to be highly effective 2-photon PSs for PDT. In conclusion, we have identified several carboxylate Pzs which should be tested further in in vivo PDT experiments.
|
36 |
Avaliação da terapia fotodinâmica antimicrobiana em aplicações múltiplas como coadjuvante ao tratamento cirúrgico em pacientes com periodontite crônica avançada / Multiple sessions of antimicrobial photodynamic therapy associated to surgical periodontal treatment in patients with chronic periodontitisCadore, Uislen Berian 29 June 2018 (has links)
A Periodontite é uma doença de etiologia multifatorial que acomete os tecidos de suporte dentário resultando em perda progressiva de inserção e perda óssea. Este estudo clínico controlado, aleatorizado e duplo-cego avaliou a eficácia da Terapia Fotodinâmica antimicrobiana (TFDa), em aplicações múltiplas, como terapia adjuvante ao tratamento periodontal cirúrgico em pacientes com Periodontite Crônica Avançada (PCA). Dezesseis voluntários foram submetidos ao modelo de estudo do tipo boca dividida, recebendo tratamento de acesso cirúrgico associado a raspagem e alisamento radicular (RAR) adjunto à TFDa em protocolo de aplicação nos períodos de 0, 2, 7 e 14 dias pós-operatórios (Grupo Teste - GT), ou apenas tratamento de acesso cirúrgico associado a RAR (Grupo Controle - GC). Todos os pacientes receberam orientação de higiene oral e acompanhamento por 90 dias pós-cirúrgicos. Os seguintes parâmetros clínicos e microbiológicos foram avaliados: Nível clínico de inserção (NCI), Profundidade de sondagem (PS), Recessão gengival (RG), Sangramento à sondagem (SS), Índice de placa (IP) e contagem de 40 espécies microbianas subgengivais (checkerboard DNA-DNA hybridization). Os dados foram coletados nos períodos baseline (pré-terapia básica), 60 dias (30 dias após terapia não cirúrgica) e 150 dias (90 dias pós-cirurgia). Uma redução significativa na PS foi observada aos 150 dias para o GT, quando comparado ao GC no mesmo período (p < 0,05). O ganho do NCI foi significativamente maior no GT entre os tempos de 60 e 150 dias (p < 0,05). As mudanças da microbiota subgengival foram similares entre os grupos (p > 0,05), mas o Grupo Teste apresentou quantidades mais elevadas de bactérias compatíveis com saúde periodontal no período final do experimento em relação ao GC (p < 0,05). Concluiu-se que a utilização da TFDa em aplicações múltiplas, como terapia adjuvante ao tratamento cirúrgico periodontal, produziu melhoras significativas nos parâmetros clínicos no período de 90 dias de avaliação / Chronic Periodontitis is a multifactorial disease which results in tooth supporting tissues loss. This double-blind randomized controlled clinical trial assessed the efficacy of multiple sessions of antimicrobial photodynamic therapy (aPDT) as an adjunct to surgical periodontal treatment in patients with severe chronic periodontitis (SCP). Sixteen volunteers were selected into this Split-mouth study. They were subjected to scaling and root planning in open flaps (SRP) combined with aPDT at 0, 2, 7, and 14 postoperative days (Test Group - TG), or only SRP (Control Group CG). All patients were instructed about oral hygiene and were followed up for 90 days after surgery. The following clinical and microbiological parameters were assessed: clinical assessment level (CAL), probing depth (PD), gingival recession (GR), bleeding on probing (BOP), plaque index (PI). Levels of 40 subgingival species were measured by checkerboard DNA-DNA hybridization at baseline, 60 (30 days after non-surgical therapy) and 150 days (90 days post-surgery). Data were collected at baseline (pre-intervention), at 60 days (30 days after the end of nonsurgical therapy), and at 150 days (90 days after surgery). A significant reduction in PD was observed at 150 days for the TG, when compared to the CG (p < 0.05). CAL gain was significantly higher in the TG at 60 and 150 days (p < 0.05). Changes in the subgingival microbiota were similar between the groups (p > 0.05), but the TG revealed a larger number of bacteria associated with periodontal disease at the end of the experiment compared to the CG (p < 0.05). In conclusion, multiple sessions of aPDT as an adjunct to surgical periodontal treatment significantly improved clinical parameters at 90 postoperative days
|
37 |
Hipericina, Photodithazine e Photogem: um estudo comparativo da atividade fotodinâmica / Hypericin, Photodithazine e Photogem: a comparative study of the photodynamic activityBernal, Claudia 19 April 2011 (has links)
A Terapia Fotodinâmica (TFP) é uma técnica para tratamento de câncer que usa um fotossensibilizador (FS) na presença de luz e oxigênio gerando espécies altamente reativas de oxigênio que levam as células tumorais à morte. <br />Neste trabalho foi realizado um estudo comparativo com três FSs: Photogem® (PG), um derivado de hematoporfirina que está sendo usado em TFD no Brasil; Photodithazine® (PZ), um derivado hidrossolúvel de mono-L-aspartil clorina, que está na fase clínica para aprovação e Hipericina (HY), um pigmento fotoativo encontrado na planta Hypericum perforatum e usado na medicina popular que está sendo considerado como um promissor agente fotodinâmico para o tratamento de tumores. Este estudo utilizou uma Hipericina sintetizada no Brasil e diversos parâmetros para comparar os três FSs: a concentração inibitória média (IC50) em linhagens celulares; a constante de velocidade de fotoxidação da albumina de soro bovino na presença dos FSs e luz determinada pelo decréscimo na fluorescência da BSA em 340 nm; a fotoxidação do ácido úrico acompanhada pelo decréscimo da banda característica do ácido úrico em 290 nm após irradiação na presença dos FSs como uma estimativa indireta do rendimento quântico de formação de oxigênio singlete (ΔΦ); o rendimento quântico de fluorescência utilizando rodamina B como padrão; a acumulação dos FSs em células em função do tempo de incubação e a estimativa da quantidade de radicais livres formados após irradiação através da técnica de captura de spins. Todos os resultados obtidos evidenciam uma maior eficiência fotodinâmica da HY seguida pelo PZ e depois por Photogem e, portanto sugerem a Hipericina como o FS de maior potencial para utilização em Terapia Fotodinâmica. / Photodynamic Therapy (PDT) is a technique for the cancer treatment that uses a photosensitizer (FS) in the presence of light and oxygen which combined are able to generate highly reactive oxygen species that lead to tumor cells death. <br />In this investigation, a comparative study with three FSs: Photogem ® (PG), a hematoporphyrin derivative being used in PDT in Brazil; Photodithazine ® (PZ), a soluble derivative of mono-L-aspartyl chlorin, which is in clinical phase for approval and Hypericin (HY), a photoactive pigment found in the plant Hypericum perforatum and used in popular medicine that is being considered as a promising agent for photodynamic treatment of tumors. The present study used a Hypericin synthesized in Brazil and several parameters to compare these three FSs: the mean inhibitory concentration (IC50) in cell lines; the rate constant for the photooxidation of bovine serum albumin in the presence of light and the FSs determined by the decrease in the fluorescence of BSA at 340 nm; the photooxidation of uric acid assessed by the decrease of the characteristic band of uric acid at 290 nm after irradiation in the presence of the FSs as an indirect estimate of the quantum yield of formation of singlet oxygen (ΔΦ); the quantum yield of fluorescence using rhodamine B as a standard; the accumulation of FSs in cells as a function of the incubation time, and the estimative of the produced free radicals after irradiation by the technique of spin trapping. All the results show a higher photodynamic efficiency of HY followed by PZ and then by Photogem suggesting Hypericin as the FS with the greatest potential for use in Photodynamic Therapy.
|
38 |
Inativação de Streptococcus pneumoniae por terapia fotodinâmica infravermelha com indocianina verde e sua interação com macrófagos RAW 264.7 / Streptococcus pneumoniae inactivation through infrared photodynamic therapy with indocyanine green and its interaction with RAW 264.7 macrophagesLeite, Ilaiáli Souza 17 July 2015 (has links)
As infecções do trato respiratório inferior lideram entre as principais causas de morbidade e mortalidade no mundo. Um dos grandes problemas associados ao tratamento das infecções do sistema respiratório, como as pneumonias, advém da crescente resistência aos mais modernos antibióticos adquirida pelos microrganismos. A terapia fotodinâmica, uma técnica baseada na interação da luz com uma substância fotoativa para causar dano oxidativo a células, tem se destacado como uma interessante alternativa para diversas doenças como diferentes tipos de câncer e infecções. Neste trabalho foi realizada, com experimentos in vitro, uma prova de princípio da possibilidade de inativar, com um protocolo eficiente e seguro, uma das bactérias mais comumente encontradas em quadros de pneumonia, a Streptococcus pneumoniae, com terapia fotodinâmica infravermelha mediada pela indocianina verde. Duas fontes de luz, uma a base de lasers emitindo 780 nm e outra construída com LEDs emitindo 850 nm, foram comparadas para avaliar sua eficiência. Experimentos com a bactéria foram realizados para determinação dos melhores parâmetros de inativação microbiana. Em seguida, ensaios de citotoxicidade foram feitos com macrófagos RAW 264.7 com o intuito de averiguar se as condições microbicidas não apresentavam atividade tóxica para células fagocitárias do sistema imune. Foi possível delinear os parâmetros de concentração de indocianina, tempo de incubação e dose de luz que apresentassem atividade microbicida e que não fossem tóxicas para as células. A interação da terapia fotodinâmica com a ação fagocitária dos macrófagos sobre as bactérias foi avaliada pelo estabelecimento de co-cultura dessas espécies. Concluiu-se que, utilizando-se LEDs de 850 nm fornecendo uma dose de luz de 10 J/cm2 as amostras contendo indocianina verde 5μM, é possível inativar S. pneumoniae de modo eficiente e auxiliar a ação fagocitária de macrófagos. / The lower respiratory tract infections lead among the main causes of morbidity and mortality worldwide. A major problem associated with respiratory tract infections, e.g. pneumonia, stems from from the increasingly resistance to most modern antibiotics developed by microorganisms. Photodynamic therapy, a technique based on the interaction of light and a photoactive substance to cause oxidative damage to cells, has emerged as an attractive alternative for several diseases such as different kinds of cancer and infections. In this work, with in vitro experiments, we accomplished a proof of concept for the possibility of inactivating, with an efficient and secure protocol, one of the most commonly found bacteria in pneumonia cases, Streptococcus pneumoniae, with infrared photodynamic therapy mediated by indocyanine green. Two light sources, one based on 780 nm lasers and the other built with 850 nm LEDs, were compared to evaluate their efficiency. Experiments with bacteria determined the best parameters microbial inactivation. Then, cytotoxicity assays with RAW 264.7 macrophages analyzed if the microbicidal parameters had toxic effects on immune cells. It was possible to delineate the indocyanine concentration parameters, incubation time and dose of light to obtain microbicidal results that weren´t toxic to the cells. Interaction of photodynamic therapy with the phagocytic action of macrophages on the bacteria was assessed by establishing a co-culture with these species. We concluded that, using 850 nm LEDs providing a light dose of 10 J/cm2 to samples containing 5μM indocyanine green, it is possible to inactivate S. pneumoniae and efficiently assist the phagocytic action of macrophages.
|
39 |
\"Fotodegradação do Photodithazine e citotoxicidade dos fotoprodutos formados após irradiação com laser\" / \"Photobleaching of Photodithazine and cytotoxicity of photoproduct formation during illumination with laser\"Corrêa, Juliana Camilo 03 October 2006 (has links)
A Terapia Fotodinâmica consiste em uma nova e promissora técnica de diagnóstico e tratamento de tumores malignos. O tratamento se baseia na administração intravenosa de um fotossensibilizador que acumula-se seletivamente em tecido tumoral, sendo a seguir excitado com luz visível gerando espécies tóxicas às células levando-as à morte. Neste trabalho estudou-se o Photodithazine (PDZ), uma nova droga fotossensibilizadora produzida na Rússia que consiste de um derivado hidrossolúvel de mono-L-aspartil clorina, com potencial aplicação em Terapia Fotodinâmica (PDT). A fotodegradação do PDZ foi induzida em diferentes condições e a citotoxicidade do PDZ não irradiado e previamente irradiado foi investigada na ausência (escuro) e presença de luz (claro) em células normais (VERO) e tumorais (HEp-2). A fotodegradação do PDZ foi induzida com laser (488 e 514 nm) e com LED (630 nm). Quando PDZ é fotodegradado ocorre uma diminuição da intensidade de absorção e fluorescência e o aparecimento de uma nova banda de absorção em 668nm, o que sugere transformações químicas que levam à formação de fotoprodutos. Análises realizadas através do método CCA (Convex Constrain Analysis) demonstraram que existem duas espécies distintas, uma que se degrada e outra que se forma (fotoprodutos) em função do tempo. Observa-se também que a fotodegradação do PDZ é mais rápida em 630nm seguida de 514 e 488nm. Comparando-se estes resultados com o Photogem® (fotossensibilizador aprovado para uso em PDT no Brasil), nota-se que o PDZ não apresenta agregação numa ampla faixa de concentração, absorve em comprimento de onda maior do que o Photogem® e fotodegrada em tempo menor. O estado de agregação do PDZ depende do pH e em soluções ácidas apresenta-se agregado. Estudos na presença de surfactantes mostraram que os processos de degradação e formação de fotoprodutos do PDZ apresentaram comportamento diferente do que em PBS. Experimentos com azida sugerem que a fotodegradação do PDZ ocorre pelo mecanismo tipo II, via formação de oxigênio singlete. O tempo de incubação do fotossensibilizador nas células e a presença de soro afetam a citotoxicidade do PDZ nas células normais e tumorais, na ausência ou presença de luz. Quando PDZ é irradiado ocorre uma diminuição da citotoxicidade nas células VERO e HEp-2 no escuro em função do tempo de irradiação, ou seja, os valores de IC50 aumentam 26, 14 e 34% nos comprimentos de onda 488, 514 e 630nm, respectivamente. Entretanto, o aumento do IC50 para as células HEp-2 é de aproximadamente 58% contra 25% para as células VERO. No estudo citotóxico no claro, o aumento do tempo de incubação e tempo de irradiação aumentam a citotoxicidade do PDZ não irradiado. No claro, a citotoxicidade do PDZ é enormemente potencializada pela luz tanto para as células VERO quanto para as células HEp-2. Com o aumento do tempo de exposição da solução de PDZ à luz a citotoxicidade do fotossensibilizador no claro aumenta discretamente para ambas linhagens. Verificou-se que os fotoprodutos formados após a irradiação do PDZ são menos citotóxicos no escuro (2,2 vezes) do que o PDZ não irradiado e cerca de 18 vezes mais citotóxicos na linhagem normal e 10 vezes mais citotóxico na linhagem tumoral no claro. O PDZ apresentou uma importante vantagem sobre o Photogem®, ou seja, é menos citotóxico no escuro e mais citotóxico no claro para ambas linhagens. Esses resultados sugerem um enorme potencial de aplicação clínica desse fotossensibilizador derivado de clorina em Terapia Fotodinâmica. / Photodynamic Therapy (PDT) consists in a technique for cancer treatment. The treatment is based on intravenous administration of the photosensitizer (PS), which is selectively retained in tumor tissue, and when is activated with visible light it can be able to become cytotoxic, being responsible for tumor death. In this study the PS used was Photodithazine (PDZ), a derivative water-soluble of mono-L-aspartil chlorine produced in Russia. It was investigated the PDZ degradation by light (photobleaching) in several conditions and the cytotoxicity of non-irradiated and previously irradiated PDZ in the absence (dark) and presence of light in culture of normal (VERO) and tumor cells (HEp-2). These results were compared with results obtained for Photogem® (photosensitizer approved for use in PDT in Brazil, a hematoporphyrin derivative). PDZ photobleaching was induced with laser in two wavelengths (488 and 514nm) and with LED in 630nm. The degradation was monitored by the decreasing in the absorption and fluorescence intensities. It was observed the appearance of a new absorption band in 668nm (band of photoproducts) suggesting chemistry transformation. Analyses performed with the CCA method (Convex Constrain Analysis) demonstrated that two distinct species are present after the degradation of PDZ, one of then probably being the photoproducts. The photobleaching of PDZ is faster in 630nm than in 514 and 488nm. In the used concentration range of PDZ there is no predominance of aggregated species in physiologic pH, it absorbs in wavelengths higher than Photogem® and degradates in shorter time than Photogem®. However the aggregation of PDZ depends on pH. Only in low pH PDZ presented aggregated species. Studies with surfactants showed that the degradation and formation of photoproducts of PDZ is different than in PBS. Experiments with azide (the singlet oxygen scavenger) suggest that the photobleaching of PDZ occurs by the type II mechanism (singlet oxygen formation). In the cytotoxic studies of PDZ it was observed that the incubation time of the photosensitizer with cells and the presence of serum affect its cytotoxicity in non-tumor and tumor cells in absence and presence of light. When PDZ is previously irradiated occurs a decreasing in cytotoxicity in the dark in function of the irradiation time in both lines. However, the increase of IC50 is approximately 58% for HEp-2 and 25% for VERO. In the presence of light, the cytotoxicity of non-irradiated PDZ increases as a function of incubation and irradiation time. The cytotoxicity of PDZ is greater when in the presence of light in VERO and HEp-2. The increase of irradiation time of the PDZ solution enhances the cytotoxicity of photosensitizer in both cell lines. It is possible to conclude that the photoproducts of PDZ after irradiation are more cytotoxic in the dark (2,2 times) than non-irradiated PDZ and are more cytotoxic (18 folds) in non-tumor cells and 10 folds more cytotoxicity in tumor cell line in the presence of light. PDZ presents an important advantage compared to Photogem®, it is less cytotoxic in the absence of light and more citotóxicas in the presence of light than Photogem® for both cell lines. These results suggest a greater potential for clinical application for this chlorine photosensitizer.
|
40 |
\"Estudos espectroscópicos e citotóxicos do Photogem® fotodegradado e dos fotoprodutos formados pela irradiação com laser\" / \"Spectroscopics and cytotoxics studies of Photogem® photodegradate and of photoproducts formated by irradiation with laser\"Menezes, Priscila Fernanda Campos de 01 September 2006 (has links)
A Terapia Fotodinâmica (TFD) é uma técnica para induzir dano ao tecido tumoral e consiste na administração de uma droga fotossensível que pode ser seletivamente retida no tecido tumoral e que produz oxigênio singlete quando irradiada em comprimento de onda adequado na presença de oxigênio molecular. Fotossensibilizadores do tipo porfirinas podem ser degradados pela luz modificando a concentração do fotossensibilizador (FS) no tumor. Este processo chamado de fotodegradação caracteriza-se pela diminuição nas intensidades das bandas de absorbância e fluorescência e pode ser acompanhado pela formação de fotoprodutos. Neste estudo o FS usado foi Photogem®, um derivado de hematoporfirina produzido na Rússia e que está sendo usado em TFD no Brasil. A fotodegradação do sensibilizador e formação de fotoprodutos foi monitorada pelas mudanças nas propriedades de fluorescência e absorbância, assim como pela formação do fotoproduto evidenciado pelo aparecimento de uma nova banda em torno de 640nm em PBS e 660nm em soluções de Triton X-100 e Brij-35. A fotodegradação do Photogem® e a formação dos fotoprodutos foram induzidas pela irradiação com laser e LED em diferentes concentrações, comprimentos de ondas de irradiação (351, 488, 514 e 630nm), em diferentes intervalos de tempo e intensidades de irradiação. A citotoxicidade do Photogem® e seus fotoprodutos em células tumorais (HEp-2) e células normais (VERO) foram investigadas no escuro e no claro. Experimentos em animais foram realizados com o objetivo de verificar a profundidade de necrose causada por Photogem® e seus fotoprodutos. Os resultados sugerem que os fotoprodutos do Photogem® são menos citotóxicos tanto no claro como no escuro e esta citotoxicidade diminui com o aumento do tempo de irradiação prévia do Photogem® . Os fotoprodutos obtidos do Photogem® em 514nm precisam de 1 h de irradiação em ambas as linhagens celulares para ter a mesma citotoxicidade que Photogem® irradiado por 14 min em células tumorais e 25 min em células normais. Os resultados sugerem que diferentes processos ocorrem na degradação do FS quando em diferentes meios (PBS, surfactantes e solventes), em diferentes concentrações e condições de irradiação (comprimento de onda, potência, tempo). Em TFD, os sensibilizadores estão tipicamente presentes em altas concentrações nas células tumorais. Desta forma, a fotodegradação dos fotossensibilizadores em taxas apropriadas durante a iluminação em PDT, pode vir a diminuir a concentração destes fotossensibilizadores nos tecidos normais, levando a uma diminuição da fotossensibilidade e fototoxicidade (pele), enquanto quantidade suficiente de fotossensibilizador pode persistir nas células tumorais para posterior fotodestruição, resultando em menor dano para o tecido normal. Assim a fotodegradação do fotossensibilizador é o elo fundamental da distribuição da dose fotodinâmica nos fluidos biológicos, estando relacionado com a cinética de eliminação do fotossensibilizador do organismo. Para os dados obtidos in vivo para a profundidade de necrose em tecido de fígado de ratos do Photogem®?e seus fotoprodutos obtidos pela degradação em 514nm e em 630nm, observou-se que na dose de irradiação de 150J/cm2 em ambas as concentrações (1,5 and 2mg/Kg ), a profundidade de necrose é maior para Photogem seguida de Photogem® degradado previamente em 514 e 630nm. Na dose de irradiação de 200J/cm2 e na concentração de 2mg/Kg não existe diferença na profundidade de necrose para Photogem®?bem como para seus fotoprodutos, o que pode estar relacionado com a fototoxicidade dos fotoprodutos, que em altas concentrações e doses de irradiação, apresentam uma maior atividade fotodinâmica. Os resultados obtidos in vivo concordam com os obtidos in vitro, uma vez que nos experimentos citotóxicos, Photogem® irradiado mostrouse menos tóxico do que Photogem® não irradiado e nos experimentos em animais observou-se uma menor profundidade de necrose para Photogem® irradiado. Estes resultados podem ser úteis para o estabelecimento da dosimetria para Photogem® em Terapia Fotodinâmica. / Photodynamic therapy (PDT) is a technique for inducing tumor tissue damage following administration of a drug that can be selectively retained in malignant tissue and produce singlet oxygen when irradiated in adequate wavelengths in the presence of molecular oxygen. Photosensitizers of porphyrin type can be degraded by light (photobleaching), modifying the concentration ratio of the photosensitizer (PS) in the tumor vs. normal tissue. This process, usually called photobleaching, is characterized by a decrease in the absorption and fluorescence intensities. It has been shown that, during photobleaching, the formation of redshifted absorbing photoproducts takes place. In this study the PS used was Photogem®, a hematoporphyrin derivative produced in Russia and being used in PDT in Brazil. The sensitizer photobleaching and photoproduct formation was monitored by fluorescence and absorption properties changes as well as by the photoproducts formation evidenced by the appearance of a new absorption band around 640nm in PBS and in 660nm in Triton X-100 and Brij-35 solution. Photogem® photobleaching and photoproducts formation was induced by laser and LED irradiation in different concentrations, irradiation wavelengths (351, 488, 514 and 630nm), in different time intervals and intensities of irradiation. The cytotoxicity of Photogem® and its photoproducts in tumor (HEp-2) and non-tumor (VERO) cell lines were analyzed in the dark and in the light. Experiments in animals were performed in order to access the depth of necrosis caused by Photogem® and its photoproducts in rat liver tissue. The results suggest that the photoproducts of Photogem® are less cytotoxic than Photogem® either in the dark or in the light, and the cytotoxicity decreases with the previous irradiation time of Photogem®. The photoproducts of Photogem® obtained at 514nm need one-hour irradiation for both cell lines to have the same cytotoxicity of Photogem® irradiated for 14min in tumor cells and 25min in non-tumor cells. The results suggest that different processes occurs in the PS degradation when in different environments (PBS, surfactants and solvents), in different concentrations and irradiation conditions (wavelength, potency, time). In PDT, the sensitizers are typically present in high concentrations in tumor cells. At the same time, the degradation of photosensitizers in properly elevate rates during the illumination in PDT, can lead to a decrease in the concentrations of these photosensitizers in normal tissue, decreasing the photosensibility and phototoxicity (skin), while adequate amount of photosensitizer can be maintained in tumor cells for photodestruction, resulting in a small damage for normal tissue. Photodegradation of photosensitizers is the fundamental connection of photodynamic dose distribution in the biological fluids, being related with the kinetic of photosensitizer elimination in the organism. For the data obtained in vivo for depth of necrosis of Photogem® x vii and its photoproducts obtained by degradation in 514nm and in 630nm, it was observed that in the irradiation dose of 150J/cm2 in both concentrations (1,5 and 2mg/Kg ), the depth of necrosis is greater for Photogem® followed by Photogem® previously degradated in 514 and then in 630nm. In the dose of 200J/cm2 and in the concentration 2,0mg/kg, there is no differences in the depth of necrosis for non-irradiated Photogem® as well as for its photoproducts, what can be correlated with the phototoxicity of the photoproducts, that in high concentrations and elevate irradiation doses, present a greater photodynamic activity. These results obtained in vivo are in agreement with the ones in vitro, since in the cytotoxic experiments the photoproducts are less cytotoxic than non irradiated Photogem® presenting in the animals a small depth of necrosis. These findings may be helpful for establishment of dosimetry for Photogem® in Photodynamic Therapy
|
Page generated in 0.0821 seconds