121 |
The study of transition metal surfaces and thin films with inverse photoemission and scanning tunnelling microscopyWilson, Leon Kerr January 1997 (has links)
No description available.
|
122 |
Relativistic theory of photoemission for magnetic materialsWoods, Matthew January 2000 (has links)
No description available.
|
123 |
Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling BarrierZia, Haider 07 January 2011 (has links)
There has been much work on electron emission. It has lead to the concept of the photon and new electron sources for imaging
such as electron microscopes and the rst formulation of holographic reconstructions [1-6]. Analytical derivations are important
to gain physical insight into the problem of developing better electron sources. However, to date, such formulations have su ered
by a number of approximations that have masked important physics. In this thesis, a new approach is provided that solves the
Schrodinger wave equation for photoemission from a single atom tungsten tip barrier or more generally, for photoemission from
a Schottky triangular barrier potential, with or without image potential e ects. We describe the system, then introduce the
mathematical derivation. We conclude with the applications of the theory.
|
124 |
Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling BarrierZia, Haider 07 January 2011 (has links)
There has been much work on electron emission. It has lead to the concept of the photon and new electron sources for imaging
such as electron microscopes and the rst formulation of holographic reconstructions [1-6]. Analytical derivations are important
to gain physical insight into the problem of developing better electron sources. However, to date, such formulations have su ered
by a number of approximations that have masked important physics. In this thesis, a new approach is provided that solves the
Schrodinger wave equation for photoemission from a single atom tungsten tip barrier or more generally, for photoemission from
a Schottky triangular barrier potential, with or without image potential e ects. We describe the system, then introduce the
mathematical derivation. We conclude with the applications of the theory.
|
125 |
Soft x-ray photoemission study of the Heusler-type Fe_2VAl_1-zGe_z alloysMIYAZAKI, Hidetoshi, SODA, Kazuo, KATO, Masahiko, YAGI, Shinya January 2007 (has links)
No description available.
|
126 |
Study of organic semiconductor / ferromagnet interfaces by spin-polarized electron scattering and photoemission / Etude des interfaces semi-conducteur organiques/ ferromagnétiques par la diffusion d'électrons polarisés en spin et la photoémissionDjeghloul, Fatima Zohra 26 November 2013 (has links)
J'ai étudié les interfaces semi-conducteur organiques/ferromagnétique par la diffusion des électrons et la photoémission résolue en spin. Dans la première partie, un comportement inattendu de la réflexion d'électrons dépendante de spin à ces interfaces est observé. En fait, une couverture sous-monocouche des molécules organiques rend l’amplitude de réflexion d’électrons indépendante de spin, c.à.d. que la réflectivité ainsi que la phase de réflexion devient indépendante de l'orientation du spin des électrons incidents. Bien que je ne sois pas en mesure d'identifier la cause de ce phénomène, je montre qu'il s'agit d'un phénomène très général qui est indépendante de l'énergie des électrons primaires, du choix du substrat ferromagnétique, du choix de la molécule organique, et de l'orientation de la polarisation initiale. Il n'est pas du à un changement de l’aimantation de surface, à une dépolarisation des électrons primaires, ou à une interaction directe des molécules avec le substrat ferromagnétique. En outre, la théorie ne prédit pas les résultats expérimentaux et d'autres recherches sont donc nécessaires pour dévoiler la physique derrière ces observations. Dans la seconde partie de ma thèse, les expériences de photoémission résolue en spin sont réalisées au synchrotron SOLEIL. Le résultat principal est l'observation d'un état électronique induite par les molécules organiques près du niveau de Fermi qui est hautement polarisé en spin. Des mesures en fonction de l’épaisseur de la couche organique permettent d’identifier le caractère interfacial de cet état électronique. Enfin, ces résultats sont comparés avec des calculs théoriques effectués à l'institut. / I studied organic semiconductor/ferromagnet interfaces by characterizing them by spin-polarized electron scattering and photoemission spectroscopy experiments. In the first part, a completely unexpected behaviour of the spin-dependent electron reflection properties of these interfaces is observed. In fact, sub-monolayer coverage of the organic molecules makes the electron reflection amplitude independent of the spin, i.e. both the reflectivity and the reflection phase become independent of the spin orientation of the incident electrons. Although I am not able at the moment to identify the cause of this phenomenon, I show that it is a very general phenomenon which is independent of the energy of the primary electrons, the choice of the ferromagnetic substrate, the choice of the organic molecule, and of the orientation of the initial spin polarization. It is not due to a change of the surface magnetization, a depolarization of the primary electrons, or a direct interaction of the molecules with the ferromagnetic substrate. Moreover, theory does not predict so far the experimental results and further research is required to unveil the physics behind these observations. In the second part of my thesis, spin-resolved photoemission experiments have been performed at the synchrotron SOLEIL. The main result is the observation of a highly spin-polarized molecule-induced electronic state close to the Fermi level. Measurements as a function of the organic layer thickness allow us to determine the interfacial character of this electronic state. Finally, these results are compared with theoretical calculations performed at the institute.
|
127 |
THz streaking at metal nanotipsWimmer, Lara Simone 30 January 2018 (has links)
No description available.
|
128 |
Preparation and Characterization of Van der Waals HeterostructuresCoy Diaz, Horacio 28 June 2016 (has links)
In this dissertation different van der Waals heterostructures such as graphene-MoS2 and MoTe2-MoS2 were prepared and characterized. In the first heterostructure, polycrystalline graphene was synthesized by chemical vapor deposition and transferred on top of MoS2 single crystal. In the second heterostructure, MoTe2 monolayers were deposited on MoS2 by molecular beam epitaxy.
Characterization of graphene-MoS2 heterostructures was conducted by spin and angle resolve spectroscopy which showed that the electronic structure of the bulk MoS2 and graphene in this van der Waals heterostructures is modified. For MoS2 underneath the graphene, a band structure renormalization and spin polarization are observed. The band structure of MoS2 is modified because the graphene induces screening which shifts the Г-point ~150 meV to lower binding compared to the sample without graphene. The spin polarization is explained by the dipole arising from band bending which breaks the symmetry at the MoS2 surface. For graphene, the band structure at lower binding energy shows that the Dirac cone remains intact with no significant doping. Instead, away from the Fermi level the formation of several gaps in the pi-band due to hybridization with states from the MoS2 is observed.
For the heterostructures made depositing monolayer of MoTe2 on MoS2, the morphology, structure and electronic structure were studied. Two dimensional growth is observed under tellurium rich growth conditions and a substrate temperature of 200 °C but formation of a complete monolayer was not achieved. The obtained MoTe2 monolayer shows a high density of the mirror-twins grain boundaries arranged in a pseudo periodic wagon wheel pattern with a periodicity of ~2.6 nm. These grain boundary are formed due to Te-deficiency during the growth. The defect states from these domain boundary pin the Fermi level in MoTe2 and thus determine the band alignment in the MoTe2-MoS2 heterostructures.
|
129 |
Chemistry and physics of diamond surfacesDomke, Andreas January 1999 (has links)
This thesis is concerned with the chemistry and physics of C(100) surfaces of diamond. The polished and cleaned C(100) surface is examined by surface microscopy (Atomic-force Microscopy), electron diffraction (Low-energy Electron Diffraction) and photoemission (X-ray Photoelectron Spectroscopy and Ultra-violet Photoelectron Spectroscopy). Results are presented on the presence of oxygen, nitrogen and hydrogen/deuterium on the C(100) surface. Finally, the valence band structure of diamond is probed by angle-resolved photoemission. We have confirmed by AFM that the grooves from the soft polishing process are present on a polished C(100) surface and found sporadic traces of hard polish on a surface polished in the soft polishing direction. XPS studies have verified heating cycles by electron beam bombardment as a suitable cleaning procedure for pure reconstructed C(100) surfaces. By allowing the crystal to cool slowly, the first experimental evidence of quarter-order LEED spots have been found, which suggest that buckled dimerisation might have occurred similar to those on Si(100) and Ge(100). We present the first experimental electron spectroscopy results for a nitrogen impurity in diamond by showing the N KLL Auger spectrum. An attempt to smooth a C(100) surface of diamond by an atomic hydrogen plasma did not succeed. AFM studies showed no evidence for the surface smoothing reported in other studies, but the results enable us to explain the different plasma published in the literature. The valence band of diamond is investigated by off-normal ARUPS. The features observed are consistent with possible transitions, which are determined using bulk band structure calculations and comparison with the experimental binding energies.
|
130 |
X-ray spectroscopy of electronic band structure in vanadium oxide nanoparticlesAnquillare, Emma L. B. 25 September 2021 (has links)
In order to elucidate the effects of nanostructuring on electron behavior in vanadium oxides, a suite of x-ray spectroscopy techniques was employed to comprehensively characterize the electronic structures of V2O5 and VO2 nanoparticles and compare them to their bulk counterparts. V2O5 and VO2 nanoparticle powders were characterized via PXRD, TEM, and HR-TEM to confirm size, purity, and crystallinity. Additionally, DSC and temperature-varied PXRD measurements on both VO2 samples confirmed the structural aspect of the monoclinic to rutile metal-insulator phase transition, and UV-Vis measurements allowed for Kubelka-Munk analysis on the V2O5 samples. XAS measurements enable the comparison of unoccupied conduction band states, while XES and RIXS measurements reveal occupied valence band states and the individual vanadium and oxygen PDOS below the Fermi level. XPS measurements of both core and valence band states both confirmed the valence band structure revealed by XES and also provide information on core-state energy levels. In the case of V2O5, the valence band O 2p states are upshifted in the nanoparticle sample, while the lowest V 3d conduction band states are unshifting but provide more available unoccupied states for excitation. These changes produce a shrunken bandgap in the V2O5 nanoparticles that is in line with much previous computational work, but unexpected from previous experimental results and defies the Moss-Burstein effect usually observed in V2O5. The resulting changes in band structure are attributed to a higher concentration of oxygen vacancy defects in the nanoparticle sample. Additionally, electron correlation effects in V2O5 nanoparticles are found to be enhanced relative to the bulk, likely due to added electron presence in the V 3d split-off band. In the case of VO2, dramatic changes in both the valence band and conduction band states are observed both below and above the structural phase transition temperature. These changes (lowered unoccupied conduction band states coupled with broadened and upshifted occupied valence band states) also lead to nanoparticle bandgap reduction and enhanced metallicity. The enhanced metallic nature of the VO2 nanoparticles is again attributed to the increased presence of surface oxygen vacancy defects, as well as a V2O3-like surface reconstruction. Additionally, electron correlation effects are found to be reduced in the VO2 nanoparticle samples relative to the bulk, unlike in the case of V2O5.
|
Page generated in 0.0795 seconds