51 |
From Sm1-xGdxAl2 electronic properties to magnetic tunnel junctions based on Sm1-xGdxAl2 and/or [Co/Pt] electrodes : Towards the integration of Zero Magnetization ferromagnets in spintronic devices / Des propriétés électroniques de Sm1-xGdxAl2 aux jonctions tunnel comportant des électrodes Sm1-xGdxAl2 et/ou des multichouches [Co/Pt] : vers l'intégration de ferromagnétiques sans aimantation dans des dispositifs spintroniquesBersweiler, Mathias 22 October 2014 (has links)
Le contexte général de ce travail est le développement et l'intégration de nouveaux matériaux magnétiques ayant des propriétés originales et d'intérêt potentiel pour la spintronique. En tant que matériau ferromagnétique d’aimantation nulle, le composé Sm1-xGdxAl2 (SGA) suscite un intérêt particulier, puisqu’il est capable, dans son état magnétique compensé, de polariser en spin un courant d’électrons. Dans un premier temps, des expériences de photoémission résolues en angle et en spin sur synchrotron ont permis d’effectuer une analyse précise de la structure électronique selon diverses directions de la zone de Brillouin et d’estimer de manière directe la polarisation de spin au niveau de Fermi du composé SGA. Dans un second temps, une attention particulière a été portée aux multicouches [Co/Pt] et aux JTMs à base de [Co/Pt]. Les multicouches [Co/Pt] constituent la seconde électrode des JTMs à base de SGA. Leurs propriétés magnétiques (en particulier l'anisotropie perpendiculaire et l'aimantation à saturation) ont été soigneusement étudiées en fonction de l'épaisseur de Pt et de la nature de la couche tampon (Pt, MgO ou Al2O3), et en liaison avec leurs caractéristiques structurales. Leur intégration dans des JTMs à base de [Co/Pt] a permis ensuite de remonter d’une part à la polarisation tunnel effective des multicouches [Co/Pt] et d’autre part aux configurations magnétiques des différentes électrodes, configurations parfaitement expliquées et reproduites par des simulations micro-magnétiques. Dans un troisième temps, les résultats de magnéto-transport au sein des JTMs SGA/MgO/[Co/Pt] sont présentés et discutés / The general context of this work is the development and integration of new magnetic materials with original properties of potential interest for spintronic applications. In this field, the Sm1-xGdxAl2 (SGA) compound drives a particular attention, as a zero-magnetization ferromagnet that can exhibit a spin polarization in its magnetic compensated state. In a first step, synchrotron-based angle and spin resolved photoemission spectroscopy experiments have permitted to perform an accurate analysis of the electronic structure along various directions of the Brillouin Zone and to get a direct estimation of the spin polarization at the Fermi level. In a second step, a special attention has been the paid to [Co/Pt] multilayers and to [Co/Pt]-based MTJs. The [Co/Pt] multilayers would constitute the second electrode in SGA-based MTJs. Their magnetic properties (especially the perpendicular anisotropy and the saturation magnetization) have been carefully investigated as a function of Pt thickness and nature of the buffer layer (Pt, MgO or Al2O3), and in close connection with structural characteristics. Their integration in [Co/Pt]-based MTJs has permitted to determine the [Co/Pt] effective tunnel polarization and to unravel the magnetic configurations of both electrodes which are perfectly explained and reproduced by micromagnetic simulations. In a third step, the results concerning the magneto-transport experiments in SGA/MgO/[Co/Pt] MTJs are presented and discussed
|
52 |
Development of the x-ray standing waves methodology to probe the interfaces of periodic multilayers / Développement de la méthodologie des ondes stationnaires pour sonder les processus physico-chimiques aux interfaces des multicouches périodiquesWu, Meiyi 14 September 2018 (has links)
La qualité des interfaces dans les multicouches périodiques est essentielle au développement de miroirs réfléchissant efficacement dans les domaines des rayons X et extrême ultraviolet (X-EUV). De manière générale, la structure des interfaces dépend des possibles interdiffusion et processus chimiques aux interfaces entre couches. L'idée principale de cette thèse est d'appliquer la technique des ondes stationnaires dans le domaine X à la caractérisation de matériaux, principalement mais non exclusivement aux multicouches périodiques. Cette méthode est basée sur l'interférence de deux faisceaux de rayons X cohérents. L'interférence constructive sur un plan anti-nodal amplifie le champ électrique tandis que l'interférence destructive minimise ce dernier sur un plan nodal. Cette technique des ondes stationnaires dans le domaine X permet l'excitation (photoémission, fluorescence, ...) d'endroits spécifiques dans un empilement périodique de matériaux. De cette manière, les spectres expérimentaux ainsi obtenus sont principalement les spectres caractéristiques des atomes situés sur un plan anti-nodal. Combinée avec d'autres techniques expérimentales telles que la spectroscopie d'émission X (XES) ou la spectroscopie de photoélectrons dans le domaine X (XPS), une information sélective en profondeur, avec une sensibilité sub-nanométrique, peut être obtenue. / The interfacial information of periodic multilayers can be crucial for the development of reflecting mirrors which operate in the X-ray and extreme ultraviolet (X-EUV) ranges. Such information may contain the interdiffusion and chemical process at the interfaces of the layers. The idea of this thesis is to apply the X-ray standing wave technique to the characterization of materials, mainly but not limited to the periodic multilayers. X-ray standing wave technique enables to enhance the excitation (photoemission, fluorescence etc.) of specific locations within a periodic stack. The nature of such advantage is the interference of two coherent X-ray beams. One may compare the X-ray standing waves with the mechanical standing waves. The constructive interference at the anti-nodal plane amplifies the electric field; while the destructive interference at the nodal plane minimizes the electric field. In this way, the experimental spectra obtained under standing wave field will be mostly the material located on the anti-nodal plane. Combined with other techniques such as X-ray emission spectroscopy and X-ray photoelectron spectroscopy, a depth-selective information with a sub-nanoscale sensitivity can be obtained.
|
53 |
Charge properties of cuprates: ground state and excitationsWaidacher, Christoph 17 March 2000 (has links)
This thesis analyzes charge properties of (undoped) cuprate compounds from a theoretical point of view. The central question considered here is: How does the dimensionality of the CU-O sub-structure influence its charge degrees of freedom? The model used to describe the Cu-O sub-structure is the three- (or multi-) band Hubbard model. Analytical approaches are employed (ground-state formalism for strongly correlated systems, Mori-Zwanzig projection technique) as well as numerical simulations (Projector Quantum Monte Carlo, exact diagonalization). Several results are compared to experimental data. The following materials have been chosen as candidates to represent different Cu-O sub-structures: Bi2CuO4 (isolated CuO4 plaquettes), Li2CuO2 (chains of edge-sharing plaquettes), Sr2CuO3 (chains of corner-sharing plaquettes), and Sr2CuO2Cl2 (planes of plaquettes). Several results presented in this thesis are valid for other cuprates as well. Two different aspects of charge properties are analyzed: 1) Charge properties of the ground state 2) Charge excitations. (gekürzte Fassung)
|
54 |
Ultrafast study of Dirac fermions in topological insulators / Etude ultra-rapide des fermions de Dirac dans les isolants topologiquesKhalil, Lama 28 September 2018 (has links)
Cette thèse présente une étude expérimentale des propriétés électroniques de deux matériaux topologiques, notamment l’isolant topologique tridimensionnel irradié Bi₂Te₃ et le super-réseau topologique naturel Sb₂Te. Les deux systèmes ont été étudiés par des techniques basées sur la spectroscopie de photoémission. Les composés Bi₂Te₃ ont été irradiés par des faisceaux d’électrons de haute énergie. L’irradiation avec des faisceaux d’électrons est une approche très prometteuse pour réaliser des matériaux qui sont vraiment isolants dans le volume, afin de mettre en évidence le transport quantique dans les états de surface protégés. En étudiant une série d’échantillons de Bi₂Te₃ par la technique de spectroscopie de photoémission résolue en temps et en angle (trARPES), nous montrons que les propriétés topologiques des états de surface de Dirac sont conservées après irradiation électronique, mais leurs dynamiques ultra-rapides de relaxation sont très sensibles aux modifications reliées aux propriétés du volume. De plus, nous avons étudié la structure électronique des bandes occupées et inoccupées du Sb₂Te. En utilisant la microscopie de photoémission d’électrons à balayage (SPEM), nous avons constamment trouvé diverses régions non équivalentes sur la même surface après avoir clivé plusieurs monocristaux de Sb₂Te. Nous avons pu identifier trois terminaisons distinctes caractérisées par différents rapports stœchiométriques de surface Sb/Te et possédant des différences claires dans leurs structures de bandes. Pour la terminaison dominante riche en tellure, nous avons également fourni une observation directe des états électroniques excités et de leurs dynamiques de relaxation en ayant recours à la technique trARPES. Nos résultats indiquent clairement que la structure électronique de surface est fortement affectée par les propriétés du volume du super-réseau. Par conséquent, pour les deux systèmes, nous montrons que la structure électronique de surface est absolument connectée aux propriétés du volume. / This thesis presents an experimental study of the electronic properties of two topological materials, namely, the irradiated three-dimensional topological insulator Bi₂Te₃ and the natural topological superlattice phase Sb₂Te. Both systems were investigated by techniques based on photoemission spectroscopy. The Bi₂Te₃ compounds have been irradiated by high-energy electron beams. Irradiation with electron beams is a very promising approach to realize materials that are really insulating in the bulk, in order to emphasize the quantum transport in the protected surface states. By studying a series of samples of Bi₂Te₃ using time- and angle-resolved photoemission spectroscopy (trARPES) we show that, while the topological properties of the Dirac surface states are preserved after electron irradiation, their ultrafast relaxation dynamics are very sensitive to the related modifications of the bulk properties. Furthermore, we have studied the occupied and unoccupied electronic band structure of Sb₂Te. Using scanning photoemission microscopy (SPEM), we have consistently found various nonequivalent regions on the same surface after cleaving several Sb₂Te single crystals. We were able to identify three distinct terminations characterized by different Sb/Te surface stoichiometric ratios and with clear differences in their band structure. For the dominating Te-rich termination, we also provided a direct observation of the excited electronic states and of their relaxation dynamics by means of trARPES. Our results clearly indicate that the surface electronic structure is strongly affected by the bulk properties of the superlattice. Therefore, for both systems, we show that the surface electronic structure is absolutely connected to the bulk properties.
|
55 |
Effets d'une brisure de symétrie sur les stuctures électroniques d'URu2Si2 et de KTaO3 / Effects of a symmetry breaking on the electronic structure of URu2Si2 and KTaO3Bareille, Cédric 19 December 2013 (has links)
L’étude des symétries d’un système peut en révéler de nombreuses propriétés physiques. La brisure, spontanée ou non, d’une de ces symétries implique alors d’importantes conséquences sur le comportement du système. On le voit dans la description actuelle de la physique des particules, avec notamment la création de la masse, ou dans la physique des solides, domaine de cette thèse, avec l’apparition de phases aux propriétés diverses, comme le magnétisme ou la supraconductivité. Le présent travail étudie par spectroscopie de photoémission résolue en angle (ARPES) les effets d’une brisure de symétrie dans deux systèmes différents : le système de fermions lourds URu2Si2 et l’oxyde de métal de transition (TMO) KTaO3. Le cristal d’URu2Si2 passe d’une phase paramagnétique pour T>THO, sujette à la cohérence de Kondo, vers la phase dite d’ordre caché pour T<THO, avec THO ≈ 17.5 K, brisant potentiellement plusieurs symétries. Bien qu’il y a presque trente ans que cettetransition de phase fut mesurée expérimentalement, aucun modèle théorique n’a encore réussi à faire consensus dans la communauté. Malgré une caractérisation expérimentale désormais très poussé de ce système, des informations résolues en angle manquent cruellement pour la compréhension de cette mystérieuse phase. Ce travail de thèse utilise donc des installations ARPES pour mettre en évidence, entre autre, le gap d’ordre caché, d’une amplitude inférieure à 10 meV. Nous montrons que ces mesures s’accordent avec plusieurs travaux expérimentaux précédents. Finalement, nous trouvons de fortes similarités entre les dispersions mesurées et celles calculées par LSDA, soulignant toutefois la nécessité d’introduire une renormalisation importante des masses effectives. Ce résultat contraint fortement les futures modélisations du comportement électronique de l’URu2Si2, tranchant sur l’approche à adopter.Contrairement au dernier système, où nous étudions une transition de phase, dans le tantalate de potassium KTaO3, notre attention se porte sur la brisure de symétrie de translation provoquée par la surface (111). Faisant suite à des mesures de transport qui revélèrent l’existence d’un gaz d’électron bidimensionnel (2DEG) à l’interface d’une hétérostructure de deux TMOs isolants de bandes, notre groupe mesura, plus tard, des 2DEGs aux surfaces (001) nues de SrTiO3 et de KTaO3, par ARPES. C’est dans la continuité de ces résultats que se place le présent travail, avec le désir d’élargir les caractéristiques de ces 2DEGs. Ainsi, poussé par la prédiction théorique d’état au caractère topologique non-trivial, nous apportons l’évidence d’un 2DEG à la surface (111) de KTaO3. Nous modélisons ensuite avec succès sa dispersion particulière grâce à des calculs de liaisons fortes. Ce travail constitue une étape dans la possible mise en évidence d’états au caractère topologique non-trivial dans les TMOs. / Several physical properties of a system can be understood by looking at the symmetries involved. Breaking of a symmetry affects the behavior of the system, regardless ifit happens spontaneously or not. This is observed with the emergence of the mass inparticle physics models, or with the diverse phases arising in condensed matter systems,as magnetism or superconductivity. Using angle-resolved photoemission spectroscopy (ARPES), this work studies theeffects of a symmetry breaking for two different systems : the heavy fermion systemURu2Si2 and the transition metal oxide (TMO) KTaO3. In URu2Si2, a transition occurs from a paramagnetic phase at T>THO to the hiddenorder phase at T<THO, with THO ≈ 17.5 K. This new order potentially breaks several symmetries. Although this transition was measured almost thirty years back, usingelectrical transport, no theoretical model could yet bring a consensus in the community. Since then, various characterizations of this system have been realized, howevermomentum-resolved informations are still missing to help unravel this mystery. Thus,during this thesis, we used state-of-the-art ARPES setups to measure several gaps located at different points in the Brillouin zone, and with amplitudes below 10 meV. Someof them are related to the Kondo coherence, and one is the hidden order gap. We showthat these measurements are consistent with previous experimental works. Finally, weobserved that our measurements differ from LSDA calculations solely by a renormalization of the effective masses by, at least, a factor 10 close to the Fermi level. Taking intoaccount some interactions, such as electronic ones, could lead to a more accurate model.Our measurements provide the constraints for this possible modeling. Unlike the transition we just described, the symmetry breaking in potassium tantalate KTaO3 is not spontaneous. In this system, we look at the (111) surface, wherethe translation symmetry is broken. A metallic two-dimensional electron gas (2DEG)has been measured in 2004 by Ohtomo at the interface between two insulating TMOs :strontium titanate SrTiO3 and lanthanum aluminate LaAlO3. The possible electronicapplications of exotic properties in TMOs, resulting from the d orbitals, has brought anew wave of activity to this topic. Later, our group measured 2DEGs at the (001) baresurfaces of SrTiO3 and KTaO3. Following these results, we wished to tailor the characteristic of such 2DEGS. Led by the theoretical prediction of states with non-trivialtopological character, we are presenting the evidence of a 2DEG at the (111) surface ofKTaO3. We also discuss its dispersion and introduce a tight binding calculation modelsuccessfully. This work is a step towards the realization of non-trivial topological statesin transition metal oxides.
|
56 |
Chalcogen modification of GaAs(100) surfaces and metal/GaAs(100) contactsHohenecker, Stefan 03 May 2001 (has links)
Der Einfluss der Modifikation der technologisch relevanten GaAs(100) Oberfläche durch Chalkogene, i.e. Selen, Schwefel und Tellur, wird in dieser Arbeit untersucht. Es wird ein Modell vorgestellt, das die Eigenschaften der modifizierten Oberfläche beschreibt. In einem zweiten Schritt werden die so modifizierten Oberflächen mit Metallen unterschiedlicher Reaktivität und verschiedenen Elektronegativitäten bedampft. Die Bandbreite dieser Eigenschaften wird durch die Metalle Indium und Silber, das Alkalimetall Natrium, das Erdalkalimetall Magnesium und das Halbmetall Antimon abgebildet. Die Untersuchung des Einflusses der Chalkogene auf die chemischen Eigenschaften und die Barrierenhöhe der Metall/GaAs(100) Grenzfläche bilden einen weiteren Schwerpunkt. Die Änderung der Barrierenhöhe wird dabei mit Hilfe des Modells metallinduzierter Bandlückenzustände (metal induced gap states) erklärt. Als experimentelle Techniken werden Photoemissionsspektroskopie, Raman Spektroskopie und Strom-Spannungsmessungen verwendet. / The influence of a modification of the technological relevant GaAs(100) surface by chalcogens, i.e. selenium, sulphur and tellurium, is evaluated in this work. A model is proposed, which describes the properties of the modified surface. In a second step metals of different reactivity and electronegativity have been evaporated onto these modified surfaces. Among these materials were the metals indium and silver, the alkali metal sodium, the earth alkali metal magnesium and the half metal antimony. The investigation of the influence of chalcogens on the chemical properties and the barrier height of the metal/GaAs(100) interface is another point of interest. The change in barrier height is explained by the model of metal induced gap states (MIGS). Photoemission spectroscopy, Raman spectroscopy and current-voltage-measurement have been used as experimental techniques.
|
57 |
Self-assembled molecular arrays of distinct types of substituted metal phthalocyanines on crystalline metal substrates: A Nanoscale StudyToader, Marius 30 October 2012 (has links)
Trotz einer Vielzahl von Forschungsarbeiten auf dem Gebiet der Phthalocyanin-basierten organischen Verbindungen fehlt nach wie vor ein umfassendes Verständnis des Zusammenspiels zwischen strukturellen und elektronischen Eigenschaften, die sich bei der Abscheidung dieser Stoffe auf anorganische kristallinen Substraten ausbilden. Vor diesem Hintergrund wurden für die vorliegende Arbeit vier metallbasierte Phthalocyanine ausgewählt und mittels organischer Molekularstrahl-Abscheidung (OMBD) im Ultrahochvakuum (UHV) auf Ag (111) Einkristalle adsorbiert. Für die anschließende eingehende Untersuchung dieser Proben wurden insbesondere Rastertunnelmikroskopie (STM) und -spektroskopie (STS) angewandt. Ergänzend kamen Ultraviolett- und Röntgen-Photoelektronenspektroskopie (UPS und XPS) zum Einsatz, wodurch komplementäre Informationen gewonnen wurden. Die aus diesen Untersuchungen resultierenden Ergebnisse liefern einen wesentlichen Beitrag zum oben genannten Forschungsgebiet.
Die in dieser Arbeit untersuchten Metall-Phthalocyanine (MePc) wurden so ausgewählt, dass eine möglichst große Vielfalt an geometrischen und elektronischen Eigenschaften abgedeckt wurde.
Planare cobaltbasierte Phthalocyanin-Moleküle wurden in zwei Konfigurationen untersucht: einerseits das protonierte CoPc, das sich als organischer p-Halbleiter verhält, und andererseits das vollständig fluorinierte F16CoPc, das n-Halbleitereigenschaften besitzt. Bei beiden Systemen zeigte sich an der Position des Cobaltions eine Kopplung zwischen den Molkülorbitalen des Adsorbats und den Elektronenzuständen des Substrates.
Das nichtplanare Zinn-Phthalocyanin ist von besonderem Interesse aufgrund seiner beiden möglichen Adsorptionskonformationen up und down, bei denen sich das Sn-Ion oberhalb beziehungsweise unterhalb des Phthalocyaninliganden befindet. Damit stellt dieses System einen möglichen Kandidaten für Anwendungen als molekularer Schalter oder als Speichereinheit dar. In der vorliegenden Studie werden lokalisierte Schaltvorgänge einzelner Moleküle zusammen mit der Möglichkeit einer kontrollierten molekularen Nanostrukturierung gezeigt.
Lutetium (III) bisphthalocyanin wurde ausgewählt als Vertreter einer neuen Gruppe von MePc, die eine Sandwichstruktur ausbilden, bei der zwei π-konjugierte Phthalocyaninliganden über ein Seltenerd-Ion miteinander verbunden sind. Die Untersuchung dieses Systems liefert wichtige neue Erkenntnisse, wie zum Beispiel ein umfassendes Verständnis der Vorgänge bei der Selbstassemblierung innerhalb der ersten und zweiten organischen Monolage. Zudem wurde bei der Charakterisierung des Tunneltransports durch einzelne Moleküle mittels STS ein negativer differentieller Widerstand (NDR) gefunden, der von der Anzahl molekularer Lagen abhängt.
|
58 |
An ARPES study of correlated electron materials on the verge of cooperative orderTrinckauf, Jan 30 June 2014 (has links)
In this thesis the charge dynamics of correlated electron systems, in which a metallic phase lies in close proximity to an ordered phase, are investigated by means of angle resolved photoemission spectroscopy (ARPES). The analysis of the experimental data is complemented by electronic structure calculations within the framework of density functional theory (DFT).
First the charge dynamics of the colossal magnetoresistant bilayer manganites are studied. The analysis of the ARPES spectra based on DFT calculations and a Peierls type charge density wave model, suggests that charge, orbital, spin and lattice degrees of freedom conspire to form a fluctuating two dimensional local order that produces a large pseudo gap of about 450 meV in the ferromagnetic metallic phase and that reduces the expected bilayer splitting.
Next, the interplay of Kondo physics and (magnetic) order in the heavy fermion superconductor URu2Si2 is investigated. The low energy electronic structure undergoes strong changes at 17.5 K, where a second order phase transition occurs whose phenomenology is well characterized, but whose order parameter could not yet be unambigeously identified. Below THO, non-dispersive quasi particles with a large scattering rate suddenly acquire dispersion and start to hybridize with the conduction band electrons. Simultaniously the scattering rate drops sinificantly and a large portion of the Fermi surface vanishes due to the opening of a gap within the band of heavy quasi particles. The observed behaviour is in stark contrast to conventional heavy fermion systems where the onset of hybridization between localized and itinerant carriers happens in a crossover type transition rather than abruptly. These experimental results suggest that Kondo screening and the hidden order parameter work together to produce the unusual thermodynamic signatures observed in this compound.
Finally, the influence of charge doping and impurity scattering on the superconducting porperties of the transition metal substituted iron pnictide superconductor Ba(Fe1-xTMx)2As2 (TM = Co, Ni) is studied. Here, resonant soft X-ray ARPES is applied to see element selective the contribution of the 3d states of the TM substitute to the Fe 3d host bands.
The spectroscopic signatures of the substitution are found to be well reproduced by DFT supercell and model impurity calculations. Namely, the hybridization of the dopant with the host decreases with increasing impurity potential and the electronic states of the impurtiy become increasingly localized. Simultaniously, in all simulated cases a shift of the Fermi level due to electron doping is observed. The magnitude of the shift in the chemical potential that accurs in BaFe2As2, however, is in stark contrast to the marginal doping values obtained for the impurity model, where the shift of the chemical potential is largely compensated by the influence of the increasing impurity potential. This suggests that the rigid band behaviour of TM substituded BaFe2As2 is a peculiarity of the compound, which has strong implications for the developement of superconductivity. / In dieser Arbeit wird die Ladungstraegerdynamik in korrelierten Elektronensystemen, in denen eine metallische Phase in direkter Nachbarschaft zu einer geordneten Phase liegt, mit Hilfe von winkelaufgeloester Photoelektronenspektroskopie (ARPES) untersucht. Die Analyse der experimentellen Daten wird ergaenzt durch lektronenstrukturrechnungen im Rahmen der Dichtefunktionaltheorie (DFT).
Zuerst wird die Ladungstraegerdynamik in gemischtvalenten zweischichtmanganaten mit kolossalem Magnetiwiderstand studiert. Die Analyse der Photoemissionsspektren basierend auf DFT Rechnungen und einem Peierls artigem Ladungsdichtewellenmodell, legt nahe, dass die Freiheitsgrade von Ladung, Orbitalen, Spin und des Ionengitters konspirieren, um eine fluktuierende zweidimensionale lokale Ordnung zu bilden, die verantwortlich ist fuer die beobachtete Pseudobandluecke von 450 meV, und die zur Reduktion der erwarteten Zweischichtaufspaltung beitraegt. Als naechstes wird das Zusammenspiel von Kondo Physik und (magnetischer) Ordung im Schwerfermionensupraleiter URu2Si2 untersucht. Die iedrigenergetische elektronische Struktur zeigt starke Veraenderungen bei 17.5 K, wo ein Phasenuebergang zweiter Ordnungstattfindet, der phenomenologisch gut charakterisiert ist, aber dessen Ordungsparameter nocht nicht eindeutig identifiziert werden konnte. Unterhalb von THOerlangen nicht dispergierende Quasiteilchen mit gro en Streuraten abrupt Dispersion und hybridisieren mit den Leitungselektronen. Gleichzeitig sinkt die Streurate und ein gro er Teil der Fermiflaeche verschwindet durch das Oeffnen einer Bandluecke innehalb des Bandes schwerer Quasiteilchen.
Das beobachtete Verhalten steht in starkem Kontrast zu dem von konventionellen Schwerfermionensystemen, in denen die Hybridisierung zwischen lokalisierten und itineranten Ladungstraegern in einem kontinuierlichen Uebergang ablaeuft, anstatt abrubt. Diese experimentellen Befunde lassen den Schluss zu, dass das zusammenspiel zwischen Kondo Abschirmung und dem unbekannten Ordnungsparameter die ungewoehnlichen thermodynamischen Signaturen in dieser Verbindung hervorruft.
Abschliessend wird das Zusammenwirken von Ladungstraegerdotierung und Streuung an Stoeratomen auf die Supraleitung uebergangsmetalldotierter Eisenpniktid Supraleiter Ba(Fe1-xTMx)2As2 (TM = Co, Ni) untersucht. Mit Hilfe von resonantem Weichenroentgen ARPES gelingt es, elementselektiv den Beitrag der 3d Zustaende des TM Substituenten zu den Eisen 3d Wirtsbaendern zu beobachten. Die spektroskopischen Signaturen der Substitution sind mit Hilfe von DFT Rechnungen und Modelrechnungen mit zufaellig verteilten Stoeratomen gut zu reproduzieren. Insbesondere nimmt die Hybridisierung des dotierten Uebergangsmetalls und der Eisenbaender mit zunehmender Kernladungszahl ab und die elektronischen Zustaende der Stoeratome werden zunehmen lokalisiert. Gleichzeitig wird in allen gerechneten Faellen eine Verschiebung des Fermi Niveaus durch Elektronendotierung beobachtet. Der Betrag der Verschiebung des chemischen Potentials in BaFe2As2 steht allerdings in starkem Kontrast zu den Werten, die man im Falle der Modellrechnungen erhaelt, wo die Verschiebung des Fermi Niveaus durch den Einfluss des Potentials der Stoeratome groesstenteils kompensiert wird. Dies legt nahe, dass das beobachtete "rigid band" Verhalten von TM substituiertem BaFe2As2 eine Besonderheit dieser Verbindung ist, welches starke Auswirkungen auf die Ausbildung von Supraleitung hat.
|
59 |
Investigation of renormalization effects in high temperature cuprate superconductorsZabolotnyy, Volodymyr B. 16 April 2008 (has links)
While in conventional superconductors coupling between electrons and phonons is known to be responsible for the electron pairing, for the high temperature superconductors the pairing media remains under debates. Since the interactions of electrons with other degrees of freedom (phonons, magnetic excitations, etc) manifest themselves by an additional renormalization in the electronic dispersion, they can be investigated by means of Angle Resolved Photoelectron Spectroscopy. In the work renormalization in two families of high Tc cuprates have been studied. Along the diagonal of the two-dimensional BZ, the renormalization effects are represented by an unusual band dispersion that develops a so-called ‘‘kink’’. In the vicinity of the (pi, 0) point of the BZ, where the order parameter reaches its maximum, the renormalization is noticeably stronger and makes itself evident even in the shape of a single spectral line measured for a fixed momentum. It was shown that for the Bi-2212 samples substitution of Cu atoms in Cu-O plane changes renormalization features in ARPES spectra both in nodal and antinodal parts of the Brillouin zone. The smearing of the dip in the in the spectral line shape measured at (pi; 0) point can be well explained by coupling of electrons to the magnetic resonance mode. The effect of Zn and Ni substitution on the antinodal ARPES spectra was shown to be in good agreement with the influence of these impurities on magnetic resonance mode seen in inelastic neutron scattering experiments. This, in addition to the previous ARPES studies of temperature and doping dependence of peak-dip-hump structure, mass renormalization near antinodal region and a kink in the nodal part of Brillouin zone, provides further evidence that the coupling to magnetic excitations, rather than to phonons, is responsible for the observed unusual renormalization. Unlike the well studied Bi-2212 family of cuprates, photoemission on YBCO-123 turns out to be much more complicated. The observed spectra have a strong contribution from a heavily overdoped surface component with the hole doping level of about x~0.30, which is weakly dependent on the sample stochiometry. Absence of any signs of superconductivity in the spectra of the overdoped component was argued to result from the unusually high doping level. This conclusion is supported by the fact that the overdoped bands give rise to the Fermi surface and band structure consistent with the predictions of the LDA calculations, as well as, by the dependence of the photoemission matrix element on the excitation energy, which closely follows that of the superconducting bulk component. Specific experimental geometry was used to enhance the signal coming from the superconducting component. In particular, experiments with circularly polarized light bundled with simple theoretical considerations enabled better separation of the surface and the bulk components. This type of experiments also suggests that the overdoped component is mainly localized in the topmost CuO2 bilayer, while the next bilayers in the YBCO-123 structure already represent bulk properties and retain superconductivity. Using partially Ca substituted samples it was possible to obtain spectra with a suppressed overdoped component. The likely reason for the suppression is a shift of the most probable cleavage plane from the Ba–O interface to the Y layer. Spectra from the Ca substituted sample clearly reveal a sizable superconducting gap, and strong renormalization effects in the vicinity of the antinodal point. The fact that the renormalization vanishes above Tc and has strong momentum dependence, diminishing away from the (pi; 0)/(0; pi) point, strongly suggests that the reason for this renormalization in YBCO-123 is coupling of the electronic subsystem to spin resonance, similar to the case of Bi-2212.
|
60 |
Low-dimensional electron systems studied by angle- and spin-resolved photoemission spectroscopy / Systèmes électroniques de basse dimensionnalité étudiés par spectroscopie de photoémission résolue en angle et en spinDai, Ji 09 October 2019 (has links)
Les matériaux dans lesquels des interactions à plusieurs particules, un confinement de faible dimension et/ou un fort couplage spin-orbite sont présents témoignent d’une grande variété de phénomènes, mais sont encore mal compris. Des informations essentielles sur l’origine de tels phénomènes peuvent être obtenues en mesurant leur structure électronique. Cette thèse présente une étude expérimentale de la structure électronique de matériaux de faible dimension et/ou fortement corrélés présentant un intérêt fondamental actuel, en utilisant la spectroscopie par photoémission résolue en angle et en spin (ARPES et SARPES).Dans la partie introductive, je présente mon travail sur deux exemples de type "livre de texte", mais innovants, montrant comment les interactions affectent la structure de bande d'un matériau: le couplage des électrons avec des phonons dans une distribution de Debye dans un système électronique à deux dimensions (2DES) dans ZnO, semi-conducteur à oxyde à bande interdite large utilisé dans les applications photovoltaïques, et le dédoublement induit par un fort couplage spin-orbite (SOC) dans la bande de valence du ZnTe, un autre semi-conducteur important utilisé dans les dispositifs optoélectroniques. Ensuite, dans la suite de cette thèse, je discute de mes résultats originaux dans trois systèmes différents de basse dimensionnalité et d'intérêt actuel en recherche : 1.La réalisation d'un 2DES à la surface (110) de SnO₂, le premier du genre dans une structure rutile. L'ajustabilité de la densité de ses porteurs au moyen de la température ou du dépôt d'Eu, et la robustesse vis-à-vis les reconstructions de surface et l'exposition aux conditions ambiantes rendent ce 2DES prometteur pour les applications. Au moyen d'une simple réaction redox à la surface, ces travaux ont prouvé que les lacunes en oxygène pouvaient doper la bande de conduction à la surface de SnO₂, résolvant ainsi un problème longtemps débattu concernant le rôle desdites lacunes dans le dopage de type n dans SnO₂. 2.L'étude des états de surface topologiques dans M₂Te₂X (avec M = Hf, Zr ou Ti; et X = P ou As), une nouvelle famille de métaux topologiques en trois dimensions, provenant du SOC et étant protégés par la symétrie du renversement du temps. Leur structure électronique et leur texture de spin, étudiées par ARPES et SARPES, révèlent la présence de fermions de Dirac sans masse donnant naissance à des arcs de nœuds de Dirac. 3.L'étude du matériau YbNi₄P₂ à fermions lourds quasi unidimensionnel, qui présente une transition de phase quantique de second ordre d’une phase ferromagnétique à une phase paramagnétique de liquide de Fermi lors de la substitution partielle du phosphore par l'arséniure. Une telle transition ne devrait se produire que dans les systèmes zéro ou unidimensionnels, mais la mesure directe de la structure électronique des matériaux ferromagnétiques quantiques critiques faisait jusqu'à présent défaut. Grâce à une préparation et nettoyage méticuleux in situ de la surface des monocristaux YbNi₄P₂, qui sont impossibles à cliver, leur structure électronique a été mesurée avec succès au moyen de l'ARPES, dévoilant ainsi le caractère quasi-1D, nécessaire à la compréhension de la criticité quantique ferromagnétique, dans YbNi₄P₂. Le protocole utilisé pour rendre ce matériau accessible à l'ARPES peut être facilement généralisé à d'autres matériaux exotiques dépourvus de plan de clivage. / Materials in which many-body interactions, low-dimensional confinement, and/or strong spin-orbit coupling are present show a rich variety of phenomena, but are still poorly understood. Essential information about the origin of such phenomena can be obtained by measuring their electronic structure. This thesis presents an experimental study of the electronic structure of some low-dimensional and/or strongly correlated materials of current fundamental interest, using angle- and spin-resolved photoemission spectroscopy (ARPES and SARPES). In the introductory part, I present my work on two innovative textbook examples showing how interactions affect the band structure of a material: the coupling of electrons with phonons in a Debye distribution in a two-dimensional electron system (2DES) in ZnO, a wide-band-gap oxide semiconductor used in photovoltaic applications, and the splitting induced by strong spin-orbit coupling (SOC) in the bulk valence band of ZnTe, another important semiconductor used in optoelectronic devices. Then, in the rest of this thesis, I discuss my original results in three different low-dimensional systems of current interest: 1.The realisation of a 2DES at the (110) surface of SnO₂, the first of its kind in a rutile structure. Tunability of its carrier density by means of temperature or Eu deposition and robustness against surface reconstructions and exposure to ambient conditions make this 2DES promising for applications. By means of a simple redox reaction on the surface, this work has proven that oxygen vacancies can dope the conduction band minimum at the surface of SnO₂, solving a long-debated issue about their role in n-type doping in SnO₂. 2.The study of topological surface states in M₂Te₂X (with M = Hf, Zr, or Ti; and X = P or As), a new family of three-dimensional topological metals, originating from SOC and being protected by time-reversal symmetry. Their electronic structure and spin texture, studied by ARPES and SARPES, reveal the presence of massless Dirac fermions giving rise to Dirac-node arcs. 3.The investigation of the quasi-one-dimensional heavy-fermion material YbNi₄P₂, which presents a second-order quantum phase transition from a ferromagnetic to a paramagnetic phase upon partial substitution of phosphorous by arsenide. Such a transition is expected to occur only in zero- or one-dimensional systems, but a direct measurement of the electronic structure of ferromagnetic quantum-critical materials was missing so far. By careful in-situ preparation and cleaning of the surface of YbNi₄P₂ single crystals, which are impossible to cleave, their electronic structure has been successfully measured by ARPES, thus effectively unveiling the quasi-one-dimensionality of YbNi₄P₂. Moreover, the protocol used to make this material accessible to ARPES can be readily generalised to other exotic materials lacking a cleavage plane.
|
Page generated in 0.0724 seconds