21 |
R7 photoreceptor axon targeting and presynaptic assembly in DrosophilaHolbrook, Scott, 1975- 12 1900 (has links)
xi, 56 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / The development of a functional nervous system is paramount for the ability of animals to interact with their environments. Minor defects in nervous system function compromise the effectiveness of sensing and responding to stimuli. Severe defects in nervous system function often lead to extreme sensory, cognitive and motor skill impairment. The nervous system is a complex network of connections, with each neuron making functional contacts with several other neurons. Any single animal species generally exhibits a stereotyped pattern of neuronal connectivity, but the specific intrinsic and extrinsic signals that impart to a neuron its unique connective properties have only recently begun to be identified.
In this study, we use the Drosophila visual system to examine neuronal connectivity. Our screen for genes involved in R7 photoreceptor connectivity led to the identification of the RhoGAP domain-containing protein dsyd-1 and the transcriptional repressor tramtrack . Flies harboring homozygous mutant dsyd-1 R7s fail to phototax towards UV light, an innate behavior mediated by the R7s. Subsequent analysis of axons of dsyd-1 R7s showed abnormal morphology in the region of presynaptic sites, suggesting that similar to its role in C. elegans , dsyd-1 is involved in presynaptic assembly. Further analysis demonstrated a requirement for dsyd-1 function in docking presynaptic components to terminal sites of contact.
R7 axons are restricted to non-overlapping columns in the optic neuropil, thereby preserving spatial visual information in the retintopic map. The axon terminals of tramtrack mutant R7s exhibit overgrowth, similar to that observed in R7s that have loss of function mutations in genes involved in the activin signaling pathway. Previous studies have shown that activin signaling is involved in restricting R7 axons to their appropriate columns, and our results demonstrate that tramtrack may be functioning in the same pathway. One of two tramtrack isoforms, ttk69 , is expressed in photoreceptors after they have differentiated, and expression of ttk69 is specifically required for R7 axon targeting. / Committee in charge: Eric Johnson, Chairperson, Biology;
Victoria Herman, Advisor, Biology;
Bruce Bowerman, Member, Biology;
Christopher Doe, Member, Biology;
Tom Stevens, Outside Member, Chemistry
|
22 |
Insect optomotor experiments in the dark using virtual realityHonkanen, A. (Anna) 27 November 2014 (has links)
Abstract
Vision is capable of providing an animal with a wealth of information very fast. Visually guided behaviours are numerous, ranging from foraging to navigation. Vision can be quite reliable in bright light, but the signals produced by the photoreceptors become progressively more unreliable with falling light intensities.
In this thesis the usefulness of a novel virtual reality-based environment for insect vision research is reviewed, and the low-light vision of the American cockroach, Periplaneta americana, is assessed using the optomotor behavioural paradigm and intracellular photoreceptor recordings. The optomotor reaction is visual behaviour where an animal responds to a rotation of its environment by following the movement of its surroundings with its eyes or - like insects - by rotating its body in the direction of the movement. Placing the cockroach on a trackball in the middle of the virtual reality apparatus and projecting a rotating pattern of vertical stripes around it invariably causes an optomotor reaction if the cockroach is able to see the moving pattern. Presenting the cockroaches with the stimulus pattern at different low light levels and observing their abilities to follow the movement reveal the lowest light intensity at which they are able to use vision in guiding their behaviour. The compound eye photoreceptor signals at this behavioural threshold consist of singlephoton absorption events called ‘bumps’ at the extremely low rate of one bump every ten seconds.
Furthermore, the role of the simple eyes or ocelli in the low-light vision of the cockroach is studied in the virtual reality by covering the compound eyes, the ocelli, or both. The ocelli seem to measure the light intensity and communicate this information to the compound eyes, and also have a direct effect on the general activity level of the cockroach.
|
23 |
Specific Alleles of CLN7/MFSD8, a Protein That Localizes to Photoreceptor Synaptic Terminals, Cause a Spectrum of Nonsyndromic Retinal DystrophyKhan, Kamron N., El-Asrag, Mohammed E., Ku, Cristy A., Holder, Graham E., McKibbin, Martin, Arno, Gavin, Poulter, James A., Carss, Keren, Bommireddy, Tejaswi, Bagheri, Saghar, Bakall, Benjamin, Scholl, Hendrik P., Raymond, F. Lucy, Toomes, Carmel, Inglehearn, Chris F., Pennesi, Mark E., Moore, Anthony T., Michaelides, Michel, Webster, Andrew R., Ali, Manir 06 June 2017 (has links)
PURPOSE. Recessive mutations in CLN7/MFSD8 usually cause variant late-infantile onset neuronal ceroid lipofuscinosis (vLINCL), a poorly understood neurodegenerative condition, though mutations may also cause nonsyndromic maculopathy. A series of 12 patients with nonsyndromic retinopathy due to novel CLN7/MFSD8 mutation combinations were investigated in this study. METHODS. Affected patients and their family members were recruited in ophthalmic clinics at each center where they were examined by retinal imaging and detailed electrophysiology. Whole exome or genome next generation sequencing was performed on genomic DNA from at least one affected family member. Immunofluorescence confocal microscopy of murine retina cross-sections were used to localize the protein. RESULTS. Compound heterozygous alleles were identified in six cases, one of which was always p.Glu336Gln. Such combinations resulted in isolated macular disease. Six further cases were homozygous for the variant p.Met454Thr, identified as a founder mutation of South Asian origin. Those patients had widespread generalized retinal disease, characterized by electroretinography as a rod-cone dystrophy with severe macular involvement. In addition, the photopic single flash electroretinograms demonstrated a reduced b- to a-wave amplitude ratio, suggesting dysfunction occurring after phototransduction. Immunohistology identified MFSD8 in the outer plexiform layer of the retina, a site rich in photoreceptor synapses. CONCLUSIONS. This study highlights a hierarchy of MFSD8 variant severity, predicting three consequences of mutation: (1) nonsyndromic localized maculopathy, (2) nonsyndromic widespread retinopathy, or (3) syndromic neurological disease. The data also shed light on the underlying pathogenesis by implicating the photoreceptor synaptic terminals as the major site of retinal disease.
|
24 |
Surprising Similarities in Photoreceptor Membrane Shedding between Vertebrates and the Beetle; Thermonectus MarmoratusConley, Rose 19 November 2019 (has links)
No description available.
|
25 |
Maturation of Photoreceptor Cells During Zebrafish Retinal DevelopmentCrespo, Catia 14 September 2018 (has links)
Zebrafish have been used as a model to study the vertebrate retina due to its functional and structural similarities to the human retina. Photoreceptor cells (PRCs)
are highly specialised type of neurons present in the retina. In zebrafish, PRCs can
be divided into 5 different subtypes, rods and green, red, blue and UV sensitive cones. Mature PRCs are composed of different morphological compartments (basal domain, inner segment and outer segment), which are essential for their phototransduction
ability. During development, these cells are known to arise from columnar
neuroepithelium precursor cells and undergo a maturation process to become
compartmentalised10. However, a detailed characterisation of this process is lacking in zebrafish. In this project, I aimed to establish and characterise in detail the stages of
PRC maturation in zebrafish. Next, I aimed to investigate the role of candidate genes in this PRC maturation process.
To label the plasma membrane of all cells, a zebrafish transgenic line was utilised.
Furthermore, a novel zebrafish transgenic line that labels the outer segments of red
sensitive PRCs was generated. This transgenic line enabled visualisation and volume
quantification of outer segments of red sensitive cones. The use of both transgenic lines in combination with antibody stainings indicated that, from 72 hours post fertilisation (hpf) onwards, subtypes of PRCs exhibit differences in growth rate and morphology of their cell compartments. Additionally, differences in mitochondrial clusters and nuclei positioning were observed during the maturation process. From 72 hpf to 120 hpf, rough endoplasmic reticulum accumulation emerged specifically in rod like PRCs. Changes in chromatin organisation were observed in UV sensitive cones like PRCs from 120 hpf onwards. This showed that a high degree of complexity was observed even within the cone PRC subtypes. Lastly, the role of a candidate gene, crb2b, was examined by comparing PRC maturation process in WT and crb2b mutants. My results indicate that loss of Crb2b does not show obvious defects in PRC maturation.
Results obtained in this dissertation provided a comprehensive characterisation of
six independent PRC maturation stages using the criteria of cell compartmentalisation
and growth, organellar distribution and localisation of cell polarity related protein
complexes. This defined developmental timeline provides a platform to further study
PRC maturation and function.
|
26 |
Seeing the light: Combining a behavioural and genetic approach in unraveling the mysteries of the larval visual system of Drosophila melanogasterHassan, Jana January 2000 (has links)
Using a behavioural and genetic approach, we employed single-gene mutations and photoreceptor cell ablations to study the molecules and cell-types underlying larval response to light Drosophila larvae modulate their locomotion in response to light In the Checker Assay the response to light is defined as an increased residence time in dark quadrants versus lit. In the ON/OFF Assay, it is in part defined as a decreased path length in the light. Previously, mutations in genes, which function in the adult phototransduction cascade were found to abolish fight perception as defined by a reduction in path length. This response to light was reported to be mediated by rhodopsins, other than Rh1, via a pathway similar to the one present in the adult visual system. After undertaking a similar genetic approach in the
Checker Assay, the response to light measured in this assay appears also to be
mediated through a similar pathway. Mutations in sine oculis (so), a homeobox gene
necessary for proper visual system development, and targeted expression of the cell
death gene head involution defective (hid), to larval photoreceptor neurons, abolished
light response as measured in the Checker Assay. Thus, mutations affecting development oflarval visual system suggest that this response to light is also housed in the larva’s main photoreceptor organ, the BO. The modular GAL4 system was used to target expression of cell death genes, rpr and hid, to Rh5 and Rh6 expressing larval photoreceptor cells. In strains tested in the ON/OFF Assay, in which Rh5 cells are missing, the response to light is abolished, as measured by both decreased path length and increased head swinging behaviour in
the light. In a strain in which Rh6 photoreceptor cells are ablated, this response to light is not abolished. This suggests that Rh5 mediates responses in the ON/OFF Assay, which were previously abolished by mutations in genes operating in the adult phototransduction cascade. Thus Rh5, not Rh6, appears to be necessary in mediating the response to light carried out via a pathway similar to the operating in adult phototransduction. In both ablated strains, Rh5-gal4xUAS-rpr and Rh5-gal4xUAS-hid, the integrity of remaining photoreceptor cells is not compromised, and in the latter strain, the extent of ablation appears to be complete. Previously in the ON/OFF assay, mutations and ablations of cell-types were found to
disrupt only a subset of behaviours associated with the larval perception of light. Based upon this evidence it was surmised that Rh1 mediates a basic independent visual system, which operates in the larva. However, uncovering the possible roles in this system was hindered, as parental control strains did not respond. / Thesis / Master of Science (MS)
|
27 |
Drug Screening Utilizing the Visual Motor Response of a Zebrafish Model of Retinitis PigmentosaLogan C Ganzen (8803004) 06 May 2020 (has links)
Retinitis Pigmentosa
(RP) is an incurable inherited retinal degeneration affecting approximately 1
in 4,000 individuals globally. The aim of this dissertation was to identify
drugs that can help patients suffering from the disease. To accomplish this
goal, the zebrafish was utilized as a model for RP to perform <i>in vivo</i>
drug screening. The zebrafish RP model expresses a human rhodopsin transgene
which contains a premature stop codon at position 344 (<i>Tg</i>(<i>rho:Hsa.RH1_Q344X</i>)).
This zebrafish model exhibits significant rod photoreceptor degeneration
beginning at 7 days post fertilization (dpf). To assess the visual consequence
of this rod degeneration the zebrafish behavior visual motor response (VMR) was
assayed under scotopic conditions. The Q344X RP model larvae displayed a
deficit in this VMR in response to a scotopic light offset. This deficit in
behavior was utilized to perform a drug screen to identify compounds that could
ameliorate the deficient Q344X VMR. The ENZO SCREEN-WELL® REDOX library was
chosen to be screened since oxidative stress may increase RP progression in a
non-specific manner. From this library, a β-blocker,
carvedilol, was identified as a compound that improved the Q344X VMR behavior.
This drug was also able to increase rod number in the Q344X retina. Carvedilol
was shown to be capable of working directly on rods by demonstrating that the
drug can signal through the adrenergic pathway in the rod-like human Y79 cell
line. Since carvedilol is an FDA-approved drug, this
screening paradigm was utilized to screen the Selleckchem FDA-approved library
to identify more drugs that can potentially be repurposed to treat RP like
carvedilol. Additionally, this scotopic VMR assay was used to demonstrate that
it can identify behavioral deficits in the P23H RP model zebrafish<i> (Tg</i>(<i>rho:Hsa.RH1_P23H</i>)).
This dissertation work provides a potential FDA-approved drug for RP treatment
and sets the foundation for future drug screening to identify more drugs to
treat different forms of RP.
|
28 |
Activation of mTORC1 Improves Cone Cell Metabolism and Extends Vision in Retinitis Pigmentosa Mice: A DissertationVenkatesh, Aditya 12 April 2016 (has links)
Retinitis Pigmentosa (RP) is an inherited photoreceptor degenerative disease that leads to blindness and affects about 1 in 4000 people worldwide. The disease is predominantly caused by mutations in genes expressed exclusively in the night active rod photoreceptors; however, blindness results from the secondary loss of the day active cone photoreceptors, the mechanism of which remains elusive. Here, we show that the mammalian target of rapamycin complex 1 (mTORC1) is required to delay the progression of cone death during disease and that constitutive activation of mTORC1 is sufficient to maintain cone function and promote cone survival in RP. Activation of mTORC1 increased expression of genes that promote glucose uptake, retention and utilization, leading to increased NADPH levels; a key metabolite for cones. This protective effect was conserved in two mouse models of RP, indicating that the secondary loss of cones can be delayed by an approach that is independent of the primary mutation in rods. However, since mTORC1 is a negative regulator of autophagy, its constitutive activation led to an unwarranted secondary effect of shortage of amino acids due to incomplete digestion of autophagic cargo, which reduces the efficiency of cone survival over time. Moderate activation of mTORC1, which promotes expression of glycolytic genes, as well as maintains autophagy, provided more sustained cone survival. Together, our work addresses a long-standing question of non-autonomous cone death in RP and presents a novel, mutation-independent approach to extend vision in a disease that remains incurable.
|
29 |
Neuroprotection of cone photoreceptors in retinitis pigmentosaLipinski, Daniel Mark January 2013 (has links)
Retinitis pigmentosa (RP) is a genetically and phenotypically heterogeneous condition that affects approximately 1 in 4000 individuals worldwide. The most common presentation of RP is a rod-cone dystrophy, where the degeneration of cone photoreceptors occurs secondary to advanced rod loss, leading to a significant decline in central vision and a corresponding reduction in patient quality of life. The mechanisms underlying secondary cone loss are poorly understood, particularly in disorders where the gene defect is unknown or manifest only in rod photoreceptors. Consequently, the thesis presented herein proceeds on several fronts. First, in the long term a greater understanding of the causes underlying cone loss in RP is likely to be beneficial, and so in chapter one a dominant cone degeneration is characterized using intrinsically fluorescent cone photoreceptors to track the degenerative process. Second, as we develop a greater understanding of the genetic etiology underlying RP it is likely that the number of large genes identified as being causative will increase. As currently there is no efficient way to deliver large genes to photoreceptors, chapter two explores the use of alternate viral vectors that might be used to deliver a large therapeutic transgene. Lastly, whilst our understanding of cone loss in RP remains incomplete, it is necessary to develop a broadly applicable therapy to slow or attenuate further cone loss in RP patients regardless of the underlying cause. In chapters three and four we examine the use of low molecular weight "growth factors‟, such as ciliary neurotrophic factor (CNTF), to preserve cone photoreceptors long-term using a rhodopsin knockout model of RP.
|
30 |
Rod-like Properties of Small Single Cones: Transmutated Photoreceptors of Garter Snakes (Thamnophis proximus)Yang, Guang Yu Clement 31 December 2010 (has links)
While nocturnal basal snakes have rod-dominant retinae, diurnal garter snakes have all-cone retinae. Previous work from the Chang lab identified three visual pigments expressed in the photoreceptors of Thamnophis proximus: SWS1, LWS and RH1. I further characterized T. proximus photoreceptors using electron microscopy, immunohistochemistry, and in vitro protein expression. T. proximus have four types of morphological cones: double cones, large single cones, small single cones, and very small single cones. Some small single cones have rod-like features, such as rod-like outer-segment membranes and a lack of micro-droplets. Immunohistochemistry showed that rod-specific transducin is expressed in some T. proximus photoreceptors. In vitro expression of T. proximus RH1 produced a functional rhodopsin with λmax at 485nm, which corresponds to microspectrophotometry measurement from some small single cones. Current results suggest that small single cones of T. proximus may have evolved from ancestral rods, and secondarily acquired a cone-like morphology as adaptation to diurnality.
|
Page generated in 0.102 seconds