• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 17
  • 3
  • Tagged with
  • 53
  • 30
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Modélisation et analyse expérimentale d'une centrale solaire photovoltaïque en milieu désertique maritime / Modeling and experimental analysis of a solar photovoltaic plant in a desert maritime environment

Hassan Daher, Daha 06 November 2017 (has links)
L'objectif de ce travail a été de développer un modèle pour prédire le comportement d'une installation photovoltaïque (PV) dans une zone désertique maritime, afin d'optimiser la production instantanée et de maintenir les performances au fil du temps. Les données issues du monitoring d’une centrale solaire ont été analysées afin d’en extraire des indicateurs de performances et d’étudier l'impact des facteurs climatiques (température, irradiation et dépôts de poussière). Les méthodes d'analyse de performance, telles que la "transposition aux conditions de référence" (Ex. PVUSA) et "estimation des mesures de performance" (Ex. PR) ont été appliquées pour évaluer le taux de dégradation annuel de l'installation. Une première indication de la durée de vie des installations PV pour le climat de Djibouti a été obtenue, ainsi qu'une capacité à prédire l'évolution à long terme de cette centrale et des futures installations PV. Parallèlement, un modèle numérique de l'installation PV a été construit en utilisant TRNSYS, incluant les modules et les onduleurs, pour retranscrire le comportement du système PV dans son ensemble, ainsi que les conditions environnementales dans lesquelles il évolue. Le modèle inclus dans la bibliothèque TRNSYS a été amélioré à l'aide de résultats expérimentaux, en particulier en ce qui concerne la dépendance thermique. Un modèle prédictif a donc été développé combinant l'accumulation de poussière, un modèle empirique de températures et de dégradation du module. Enfin, une étude paramétrique a été réalisée avec le modèle complet, afin d'évaluer l'impact du nettoyage pour divers scénarios d’empoussièrement. Les résultats contribueront à l'optimisation de la conception et de l'exploitation des centrales solaires dans ce type de climat. / The objective of this work has been to develop a model for the behavior of a photovoltaic (PV) plant in an arid zone, to optimize instantaneous production and maintain performance over time. Monitoring data were collected for a solar power plant, which were then studied to infer the impact of climatic factors (temperature, irradiation and dust deposits). Performance analysis techniques including "transposition to reference conditions" (eg. PVUSA) and "estimation of standard performance measures" (eg. PR) were applied to evaluate the annual degradation rate of the facility. A first indication of expected lifetime of PV installations for the climate of Djibouti was thus obtained, as well as a capacity to predict the long-term evolution of the plant and future installations. In parallel, a numerical model of the photovoltaic installation was constructed using TRNSYS, including the modules and inverters, to transcribe the behavior of the PV system as a whole, and also the environmental conditions in which it evolves. The model included in the standard TRNSYS library was improved with the aid of experimental results, in particular with regards the thermal dependence. A predictive model was thus developed combining dust accumulation, an empirical model of module temperatures and degradation. Finally, a parametric study was undertaken with the complete model, to evaluate the impact of cleaning schedules under various dust scenarios. The results will contribute to the optimization of solar power plant design and operation in this type of climate.
52

Modélisation de solides à nanocristaux de silicium / Modelling of silicon nanocrystal solids

Lepage, Hadrien 22 October 2012 (has links)
Les propriétés physico-chimiques d'un nanocristal semi-conducteur sphérique, intermédiaires entre la molécule et le solide, dépendent de sa taille. Empilés ou dispersés, ces nanocristaux sont les briques architecturales de nouveaux matériaux fonctionnels aux propriétés ajustables, en particulier pour l’optoélectronique. Cette thèse s'inscrit dans le développement de ces nouveaux matériaux et présente avant tout une méthodologie pour la simulation du transport électronique dans un solide à nanocristaux en régime de faible couplage électronique appliquée à des nanocristaux de silicium dans une matrice de SiO2 pour les applications photovoltaïques. La cinétique du déplacement des porteurs est liée au taux de transfert tunnel (hopping) entre nanocristaux. Ces taux sont calculés dans le cadre de la théorie de Marcus et prennent en compte l'interaction électron-phonon dont l'effet du champ de polarisation dans la matrice ainsi que les interactions électrostatiques à courte et longue portée. Le calcul des états électroniques (électrons et trous) en théorie k.p associé à l'utilisation de la formule de Bardeen donne au code la capacité, par rapport à la littérature, de fournir des résultats (mobilité ou courant) en valeur absolue. Les résultats de mobilité ainsi obtenus pour des empilements cubiques idéaux viennent contredire les résultats de la littérature et incitent à considérer d'autres matériaux notamment en ce qui concerne la matrice pour obtenir de meilleurs performances. En outre, les résultats de simulation de dispositifs montrent l'impact considérable des électrodes sur les caractéristiques courant-tension. Aussi, un nouvel algorithme Monte-Carlo Cinétique accéléré a été adapté afin de pouvoir reproduire le désordre inhérent à la méthode de fabrication tout en maintenant un temps de simulation raisonnable. Ainsi l'impact du désordre en taille se révèle faible à température ambiante tandis que les chemins de percolation occultent la contribution des autres chemins de conduction. Des résultats de caractérisation comparés aux simulations tendent par ailleurs à indiquer que ces chemins peuvent concentrer les porteurs et exhiber un phénomène de blocage de coulomb. Enfin, la section efficace d'absorption est calculée théoriquement et permet d'obtenir le taux de génération sous illumination qui se révèle proche du silicium massif. Et une méthode en microscopie à sonde de Kelvin est décrite pour caractériser la durée de vie des porteurs c'est-à-dire le taux de recombinaison, les résultats ainsi obtenus étant cohérents avec d'autres techniques expérimentales. / The physicochemical properties of a spherical semiconductor nanocrystal, intermediate between the molecule and the solid depend on its size. Stacked or dispersed, these nanocrystals are building blocks of new functional materials with tunable properties, particularly appealing for optoelectronics. This thesis takes part in the development of these new materials. It mainly presents a methodology for the simulation of electronic transport in nanocrystal solids within the weak electronic coupling regime. It is applied to a material made of silicon nanocrystals embedded in silicon oxide and considered for photovoltaïc applications. The displacement kinetics of charge carriers is related to the tunneling transfer rate (hopping) between nanocrystals. These rates are calculated within the framework of Marcus theory and take into account the electron-phonon interactions, the effect of the bias field and the electron-electron interactions at short and long range. The calculation of electronic states (electrons and holes) in k.p theory associated with the use of Bardeen's formula provides, compared to previous works, results (mobility or current) in absolute terms. The mobility thus computed is far lower than the results of the literature and encourage to consider other materials. Furthermore, the device simulations show the significant impact of the electrodes on the current-voltage characteristics. Also, a new accelerated kinetic Monte-Carlo algorithm has been adapted in order to reproduce the disorder inherent in the manufacturing process while maintaining a reasonable simulation time. Thus the impact of the size disorder is poor at room temperature while the percolation paths shunt the contribution of other conduction paths. Characterization results compared to simulations tend to show that these paths concentrate carriers and exhibit Coulomb blockade phenomenon. Finally, the absorption cross section is calculated theoretically to obtain the generation rate under illumination. It is similar to the bulk silicon one. And a method employing a Kelvin probe microscope is described to characterize the carrier lifetime, namely the recombination rate. The results thus obtained are consistent with other experimental technics.
53

Elaboration et caractérisation de structures Silicium-sur-Isolant réalisées par la technologie Smart Cut™ avec une couche fragile enterrée en silicium poreux / Elaboration and characterization of Silicon-On-Insulator structures made by the Smart Cut™ technology with a weak embedded porous silicon layer

Stragier, Anne-Sophie 17 October 2011 (has links)
Au vu des limitations rencontrées par la miniaturisation des circuits microélectroniques, l’augmentation de performances des systèmes repose largement aujourd’hui sur la fabrication d’empilements de couches minces complexes et innovants pour offrir davantage de compacité et de flexibilité. L’intérêt grandissant pour la réalisation de structures innovantes temporaires, i.e. permettant de réaliser des circuits sur les deux faces d’un même film, nous a mené à évaluer les potentialités d’une technologie combinant le transfert de films minces monocristallins, i.e. la technologie Smart Cut™, et un procédé de de porosification partielle du silicium afin de mettre au point une technologie de double report de film monocristallin. En ce sens, des substrats de silicium monocristallin ont été partiellement porosifiés par anodisation électrochimique. La mise en œuvre de traitements de substrats partiellement poreux a nécessité l’emploi de techniques de caractérisation variées pour dresser une fiche d’identité des couches minces poreuses après anodisation et évaluer l’évolution des propriétés de ces couches en fonction des différents traitements appliqués. Les propriétés chimiques, structurales et mécaniques des couches de Si poreux ont ainsi été étudiées via l’utilisation de différentes techniques de caractérisation (XPS-SIMS, AFM-MEB-XRD, nanoindentation, technique d’insertion de lame, etc.). Ces études ont permis d’appréhender et de décrire les mécanismes physiques mis au jeu au cours des différents traitements et de déterminer les caractéristiques {porosité, épaisseur} optimales des couches poreuses compatibles avec les séquences de la technologie proposée. La technologie Smart Cut™ a ainsi été appliquée à des substrats partiellement porosifiés menant à la fabrication réussie d’une structure temporaire de type Silicium-sur-Isolant avec une couche de silicium poreux enterrée. Ces structures temporaires ont été « démontées » dans un second temps par collage polymère ou collage direct et insertion de lame menant au second report de film mince monocristallin par rupture au sein de la couche porosifiée et donc fragile. Les structures fabriquées ont été caractérisées pour vérifier leur intégrité et leurs stabilités chimique et mécanique. Les propriétés cristallines du film mince de Si monocristallin, reporté en deux temps, ont été vérifiées confirmant ainsi la compatibilité des structures fabriquées avec des applications microélectroniques telles que les applications de type « Back-Side Imager » nécessitant une implémentation de composants sur les deux faces du film. Ainsi une technologie prometteuse et performante a pu être élaborée permettant le double report de films minces monocristallins et à fort potentiel pour des applications variées comme les imageurs visibles ou le photovoltaïque. / As scaling of microelectronic devices is confronted from now to fundamental limits, improving microelectronic systems performances is largely based nowadays on complex and innovative stack realization to offer more compaction and flexibility to structures. Growing interest in the fabrication of innovative temporary structures, allowing for example double sided layer processing, lead us to investigate the capability to combine one technology of thin single crystalline layer transfer, i.e. the Smart Cut™ technology, and partial porosification of silicon substrate in order to develop an original double layer transfer technology of thin single crystalline silicon film. To this purpose, single crystalline silicon substrates were first partially porosified by electrochemical anodization. Application of suitable treatments of porous silicon layer has required the use of several characterization methods to identify intrinsic porous silicon properties after anodization and to verify their evolution as function of different applied treatments. Chemical, structural and mechanical properties of porous silicon layers were studied by using different characterization techniques (XPS-SIMS, AFM-MEB-XRD, nanoindentation, razor blade insertion, etc.). Such studies allowed comprehending and describing physical mechanisms occurring during each applied technological steps and well determining appropriated {porosity, thickness} parameters of porous silicon layer with the developed technological process flow. The Smart Cut™ technology was successfully applied to partially porosified silicon substrates leading to the fabrication of temporary SOI-like structures with a weak embedded porous Si layer. Such structures were then “dismantled” thanks to a second polymer or direct bonding and razor blade insertion to produce a mechanical rupture through the fragile embedded porous silicon layer and to get the second thin silicon film transfer. Each fabricated structure was characterized step by step to check its integrity and its chemical and mechanical stabilities. Crystalline properties of the double transferred silicon layer were verified demonstrating the compatibility of such structures with microelectronic applications such as “Back-Side Imagers” needing double-sided layer processing. Eventually, a promising and efficient technology has been developed to allow the double transfer of thin single crystalline silicon layer which presents a high potential for various applications such as visible imagers or photovoltaic systems.

Page generated in 0.0619 seconds