• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 58
  • 58
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spherical wave AVO response of isotropic and anisotropic media: Laboratory experiment versus numerical simulations

Alhussain, Mohammed January 2007 (has links)
A spherical wave AVO response is investigated by measuring ultrasonic reflection amplitudes from a water/Plexiglas interface. The experimental results show substantial deviation from the plane-wave reflection coefficients at large angles. However there is an excellent agreement between experimental data and full-wave numerical simulations performed with the reflectivity algorithm. By comparing the spherical-wave AVO response, modeled with different frequencies, to the plane-wave response, I show that the differences between the two are of such magnitude that three-term AVO inversion based on AVA curvature can be erroneous. I then propose an alternative approach to use critical angle information extracted from AVA curves, and show that this leads to a significant improvement of the estimation of elastic parameters. Azimuthal variation of the AVO response of a vertically fractured model also shows good agreement with anisotropic reflectivity simulations, especially in terms of extracted critical angles which indicated that (1) reflection measurements are consistent with the transmission measurements; (2) the anisotropic numerical simulation algorithm is capable of simulating subtle azimuthal variations with excellent accuracy; (3) the methodology of picking critical angles on seismograms using the inflection point is robust, even in the presence of random and/or systematic noise.
12

Effects of Signals from Mobile Communication Base Station and Handset on the SAR Distribution in the Human Head

Chen, Yu-chi 15 August 2005 (has links)
In recent years, the wireless communication operators use more and more systems based on the transmission and reception of EM waves. As a result, more and more base stations are being installed on the rooftop of existing buildings in densely populated areas. The prevailing of wireless communications has prompted the public¡¦s concern of the health issue. To date, the most prominent and scientifically verifiable biological effect of EM waves is the heating effect. In order to maintain the users¡¦ health from the over-heating due to excessive use, analysis of the temperature distribution inside the human body is also very critical as well as the SAR guidelines. The purpose of this thesis is to investigate the SAR values and temperature distribution inside the human head, under the EM exposure of mobile communication base station and handset based on the use of finite-difference time-domain (FDTD) method. In general, we assumed that the far-field exposure of base station are uniform plane-wave exposures. The total-field / scattered-field (TF/SF) formulation implements a compact uniform plane-wave source permitting FDTD simulations to accurately predict the SAR distribution in the human head due to uniform plane-wave exposures. Furthermore, this thesis investigates the effects of the rectangular frames of the metallic spectacles at 900MHz and 1.8 GHz for the uniform plane wave.
13

Field Penetration into Metallic Enclosures Through Aperture Excited by Uniform Plane Wave

Chiou, Chin-Fa 01 August 2000 (has links)
The finite-difference time domain(FDTD) method is formulated by discretizing Maxwell¡¦s equation over a finite volume and approximating the derivatives with centered difference approximation. The total-field/scattered-field formulation use for simulating the uniform plane wave and the added -source formulation use for simulating the plane wave,compare the result of the electric field within metallic enclosures through aperture excited by uniform plane wave with plane wave,The larger of the exciting plane of the plane wave the more approximate to the result of the uniform plane wave .It must be very large for the induced electrical field within enclosure with a slot which vertical to interference source polarization . Generally speaking, the aperture on the enclosures not the slot but small holes on the condition of don¡¦t know interference source polarization.
14

Carbon Nanotubes : A Theoretical study of Young's modulus

Fredriksson, Tore January 2014 (has links)
Carbon nanotubes have extraordinary mechanical, electrical, thermal andoptical properties. They are harder than diamond yet exible, have betterelectrical conductor than copper, but can also be a semiconductor or evenan insulator. These ranges of properties of course make carbon nanotubeshighly interesting for many applications. Carbon nanotubes are already usedin products as hockey sticks and tennis rackets for improving strength and exibility. Soon there are mobile phones with exible screens made fromcarbon nanotubes. Also, car- and airplane bodies will probably be mademuch lighter and stronger, if carbon nanotubes are included in the construction.However, the real game changers are; nanoelectromechanical systems(NEMS) and computer processors based on graphene and carbon nanotubes.In this work, we study Young's modulus in the axial direction of carbonnanotubes. This has been done by performing density functional theorycalculations. The unit cell has been chosen as to accommodate for tubes ofdierent radii. This allows for modelling the eect of bending of the bondsbetween the carbon atoms in the carbon nanotubes of dierent radii. Theresults show that Young's modulus decreases as the radius decreases. Ineect, the Young's modulus declines from 1 to 0.8 TPa. This eect can beunderstood because the bending diminishes the pure sp^2 character of thebonds.These results are important and useful in construction, not only when usingcarbon nanotubes but also when using graphene. Our results point towardsa Young's modulus that is a material constant and, above a certain criticalvalue, only weakly dependent on the radius of the carbon nanotube.Graphene can be seen as a carbon nanotube with innite radius.
15

Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering / Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes

Alzaix, Benjamin 25 April 2017 (has links)
Cette thèse porte sur la diffraction d’une onde plane électromagnétique par une surface lisse parfaitement conductrice (PEC). Elle présente l’analyse des propriétés d’une nouvelle formulation des trois principales équations intégrales de frontières de la théorie de la diffraction électromagnétique (EFIE, MFIE et CFIE). L’idée est d’adapter les équations intégrales conventionnelles à la diffraction d’une onde plane en supposant que la fonction de phase de l’onde plane incidente détermine la fonction de phase de la distribution de courant induit sur la surface.L’idée d’utiliser la phase dans la diffraction d’ondes planes a déjà été étudiée pour les hautes fréquences, notamment dans les thèses de Zhou (1995) et Darrigrand (2002) qui adaptèrent les espaces d’approximation des éléments finis. Dans cette thèse, cependant, nous suivons une formulation plus récente, donnée par Herberthson (2008), où la fonction de phase est incorporée dans la distribution du noyau des opérateurs intégraux.En présentant les versions modifiées de l’EFIE et de la MFIE (dénommées HEFIE et HMFIE)dans des espaces fonctionnels appropriés, nous prouvons ici l’existence d’une solution unique à cette formulation spécifique et présentons une mise en oeuvre pratique originale qui tire parti de l’expérience acquise sur l’EFIE/MFIE. Par la suite, nous explorons une propriété importante offerte par ces nouvelles formulations: la possibilité de réduire le nombre de degrés de liberté requis pour obtenir une solution précise du problème. / This thesis is about the scattering of an electromagnetic plane wave incidenton a perfectly conducting smooth surface. It presents the analysis of the properties of a newformulation of the three principal boundary integral equations of electromagnetic scattering theory(EFIE, MFIE and CFIE). The basic idea is to adapt the conventional integral equations toplane-wave scattering by supposing that the phase function of an incident plane wave determinesthe phase function of the induced boundary current distribution.This idea of using the phase in plane wave scattering has previously been studied in highfrequencyscattering, in particular in the theses by Zhou (1995) and Darrigrand (2002) whoadapt the finite element approximation spaces. In this thesis, though, we follow a more recentformulation, given by Herberthson (2008), where the phase function is incorporated in the kerneldistribution of the integral operators.Presenting the modified version of the EFIE and the MFIE (denoted HEFIE and HMFIE) inappropriate function spaces, we prove the existence of a unique solution to this specific formulationand developp an original practical implementation which takes advantage of the gainedexperience on the EFIE/MFIE. Then, we explore another important property provided by thenew formulations: the possibility to reduce the number of degrees of freedom required to get anaccurate solution of the problem.
16

Kubo–Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets

Calderín, L., Karasiev, V.V., Trickey, S.B. 12 1900 (has links)
As the foundation for a new computational implementation, we survey the calculation of the complex electrical conductivity tensor based on the Kubo-Greenwood (KG) formalism (Kubo, 1957; Greenwood, 1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave datasets with plane wave basis sets (BIlichl, 1994). New analytical results and a full implementation of the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso (Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity), the code calculates the full complex conductivity tensor (not just the average trace). It supports use of either the original KG formula or the popular one approximated in terms of a Dirac delta function. It provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane wave processes for their use in band parallelization as well. It is designed to provide rapid convergence with respect to k-point density. Examples of its use are given.
17

Comparison of Pushing Sequences for Shear Wave Elastography / Jämförelse av trycksekvenser för skjuvningsvågelastografi

Nordenfur, Tim January 2013 (has links)
Shear wave elastography is a medical imaging modality in which tissue elasticity is estimated by measuring the speed of ultrasound-induced shear waves. This study aimed to implement four shear wave generating pushes and compare their performance according to chosen metrics. The focused push, unfocused push, unfocused comb push and line push were implemented on a Verasonics ultrasound system and tested on a polyvinyl alcohol phantom. Shear wave propagation was imaged using angle-compounded ultrafast imaging. Axial particle velocities were estimated using a 2D autocorrelator and then cross-correlated to obtain local shear wave speed estimates. The focused push and line push were found to generate shear waves with 1--3 times higher peak axial particle velocity, implying better signal-to-noise ratios. The focused push, unfocused push and line push were found to exhibit areas 7 mm wide around the pushing beams in which shear wave speed cannot be estimated, whereas the unfocused comb push has no such blind area.
18

Aggregates of PCBM Molecules: A computational study

Kaiser, Alexander, Probst, Michael, Stretz, Holly A., Hagelberg, Frank 15 May 2014 (has links)
Small clusters of [6,6] phenyl-C61-butyric acid methyl ester (PCBM) molecules are analyzed with respect to their equilibrium geometries and associated electronic as well as energetic properties. Plane wave density functional theory (PWDFT) computations, assisted by molecular dynamics (MD) simulations, are performed on systems of the form PCBMn (n = 1-5). The bonding operative in these units is described as a cooperation between HO bonding, involving the C5H9O2 groups of the PCBM molecule, and fullerene-fullerene attraction. The maximally stable structures identified tend to include a dimer motif that combines both interaction modes. The great importance of van-der-Waals effects in stabilizing the studied clusters is demonstrated by comparing the PCBM3 series with and without inclusion of a van-der-Waals term in the PWDFT procedure. The two approaches yield reverse orders of stability. A decreasing tendency in the Kohn-Sham HOMO-LUMO gaps of PCBMn with the cluster size may be used to monitor PCBM aggregation in the active layer of organic photovoltaic devices by optical spectroscopy.
19

Development of a Multiple Microphone Probe Calibrator

Oldham, Jonathan Reed 20 July 2007 (has links) (PDF)
This paper presents the theory, design, and validation of a microphone calibrator used to calibrate multiple microphones simultaneously. This work was done in conjunction with the development of an acoustic energy density probe, which was used to validate the calibrator. The probe uses multiple microphones to acquire the data needed to compute the acoustic energy density. The probe microphones are 0.006 m diameter electret microphones which typically do not have an ideal “flat" response over a wide range of frequencies as compared to precision condenser microphones. The probe microphone characteristics prompted the need for simultaneous, multi-microphone magnitude calibration. The idea behind the calibration process was to simultaneously subject each microphone on the probe to the same known acoustic pressure over the frequency range of the probe (0-2 kHz). This is done using equal-length small-diameter tubes connected to a single source at each microphone. The calibrator was modeled using and equivalent circuit model. The model results are presented and compared to measured results. The calibrator was validated to result in the same pressure along individual paths to each microphone simultaneously. Test results show that the calibrator can calibrate each probe microphone within ± 0.5 dB up to 2000 Hz, and within ± 1 dB up to 4900 Hz with a confidence level of 95%. Directivity tests were performed to further characterize the probe. Using a correction factor the probe is shown to be directionally independent.
20

Electromagnetic analysis of ground multipath for satellite-based positioning systems

Aloi, Daniel N. January 1996 (has links)
No description available.

Page generated in 0.1015 seconds