11 |
Dynamic Soil-Structure Interaction of a Portal Frame Railway Bridge - Numerical Analysis on a Case Study BridgeIkzer, Rita January 2018 (has links)
In the field of structural dynamics, a broader knowledge about relevant phenomena that affect the dynamic behavior of railway bridges is vital for structural engineers and design code administrators. The knowledge might benefit in an increased understanding of e.g. the resonance phenomena, and in improvements of the existing design codes. A phenomenon that has received more attention in recent times is the so called soil-structure interaction (SSI), as it may significantly contribute to the stiffness and damping of a structural system. Previous investigations have suggested that the influence of SSI might be crucial for short and relatively stiff structures such as portal frame bridges. Yet, this effect is usually neglected due to the lack of simple models and guidelines. Dynamic analyses have been performed on a short-span closed portal frame railway bridge, situated on the Bothnia Line, where the effect of the surrounding and underlying soil and the ballasted track, has been investigated. This has been accomplished through the adoption of multiple boundary conditions to consider different forms of soil-structure interactions. The vertical bridge response has been studied by numerical three-dimensional models, both with full FE-models and simplified models appropriate for practical design purposes. More specifically the natural frequencies and damping ratios have been scrutinized. Theoretically, it has been identified that the contribution of the soil on the global damping is largely influential, as it has been indicated that the damping ratio of the fundamental bending mode is seven times greater than the, in this case, significantly conservative recommended design value. Furthermore, SSI has shown to increase the natural frequencies which consequently shifts the critical resonant speed, allowing for higher speeds. The bridge response is predominantly affected by the backfill soil, yet the modal damping contribution is equally substantial from the backfill and the subsoil. Moreover, it has been established that the proposed simplified model is promising and in good agreement with the full model. It has also been resolved that train passages on the surrounding soil play an important role on the dynamic bridge response. Unfortunately, the simplified model has proven to be incapable of considering these train loads, implying that further development is needed to attain an adequate model that may be implemented for portal frame bridges of short span. Applying only elastic constraints on the vertical degree of freedom at the foundation is a simplified modeling approach that fails to capture the soil behavior in an accurate manner, and is therefore not recommended for future research projects. While on the subject of future investigations, the effect of SSI should be studied on other bridges to externally validate the obtained results. / Inom strukturdynamik är det essentiellt att erhålla en bredare kunskap om relevanta fenomen som kan påverka det dynamiska beteendet av järnvägsbroar. Detta gäller för både yrkesverksamma ingenjörer och administratörer av normer och standarder för att få en ökad förståelse av exempelvis resonansfenomen samt för revidering och förbättring av befintliga normer. Ett fenomen som på senare tid har fått mer uppmärksamhet är den så kallade jord-struktur interaktionen eftersom den kan ha en signifikant inverkan på styvheten och dämpningen av ett system. Tidigare undersökningar har tytt på att effekten av jord-struktur interaktionen kan vara avgörande för korta och relativt styva broar som exempelvis plattrambroar. På grund av bristen på enkla modeller och riktlinjer är denna effekt ofta försummad. Dynamiska analyser har utförts på en kort sluten plattrambro belägen på Botniabanan, där påverkan av motfyllningen, underliggande jorden och det ballasterade spåret har utretts. Detta har åstadkommits genom att beakta olika randvillkor för att ta hänsyn till diverse former av jord-struktur interaktioner. Den vertikala responsen i bron har studerats genom tredimensionella numeriska modeller både med detaljerade FE-modeller och med praktiskt lämpade förenklade modeller, där i synnerhet egenfrekvensen och dämpningskvoten har analyserats. Bidraget från jorden har påvisat sig ha en avsevärd inverkan på den globala dämpningen då det framgick att dämpningskvoten för den fundamentala böjmoden är sju gånger större än det, i denna fallstudie, betydligt konservativa rekommenderade dimensioneringsvärdet. Dessutom har jord-struktur interaktionen lett till ökade egenfrekvenser som följaktligen skiftat den kritiska resonanshastigheten vilket tillåter högre hastigheter. Motfyllningen har haft en avsevärd effekt på responsen av bron, medan bidraget till ökningen i modala dämpningen har fördelats lika mellan motfyllningen och underliggande jorden. Vidare är den föreslagna förenklade modellen lovande och i god överenstämmelse med den detaljerade modellen. Det har även konstaterats att tågpassager på motfyllningen spelar en viktig roll för den dynamiska responsen. Dessvärre har den förenklade modellen misslyckats med att ta hänsyn till dessa tåglaster, vilket indikerar att en vidareutveckling krävs för en implementerbar adekvat modell för plattrambroar av korta spännvidder. Ett förenklat modelleringsalternativ är applicering av enbart elastiska randvillkor i den vertikala frihetsgraden av bottenplattan. Detta alternativ har visat sig vara otillräckligt för att efterlikna den underliggande jordens beteende och undanbedes för framtida studier. På tal om framtida projekt bör jord-struktur interaktionen utredas på andra broar för att externt validera resultaten.
|
12 |
Finite Element Analysis of the Dynamic Effect of Soil-Structure Interaction of Portal Frame Bridges - A Parametric StudyDagdelen, Turgay, Ruhani, Shaho January 2018 (has links)
In Sweden, the railway sector currently faces the challenge of developing its first high-speed railway line, in response to the need to provide faster domestic and international transport alternatives. High-speed train passages on railway bridges can cause resonance in the bridge superstructure, which induce high accelerations that should not exceed the limits stipulated in the current design code. The most common bridge type adopted in Sweden is the portal frame bridge, an integral abutment bridge confined by surrounding soil. The soil possesses inherent material damping and radiation damping that allows energy dissipation of train-induced vibrations. Both the damping and the natural frequency of the soil-structure system influence the acceleration response of the bridge superstructure. Therefore, it is necessary to investigate the effect of soil-structure interaction on portal frame bridges. Within this thesis, a numerical parametric study was performed to gain knowledge of the dynamic effect of the relative deck-abutment stiffness on the soil-structure interaction of portal frame bridges. For four span lengths, three different boundary conditions were analyzed in the form of i) no soil, ii) backfill, and iii) half-space. The analysis was performed on two- and three-dimensional finite element models. The backfill and subsoil were modeled with both direct finite element approach, and with a simplified approach using Kelvin-Voigt models and frequency-dependent impedance functions. Furthermore, time was devoted to investigating the nonlinear compression-only behavior of the interaction between the backfill and the abutments to allow separation. The results presented in the thesis illuminate the essence of including soil-structure interaction in the dynamic analysis as both the modal damping ratio and the natural frequency increased drastically. The effect of backfill on short span bridges has shown to be more prominent on the reduction of the train-induced vibrations. For longer spans, the subsoil proved to be more significant. For the simplified models the modal damping ratios of the different span lengths have been quantified as a logarithmic trend of the first vertical bending mode. Two-dimensional models have been problematic when using plane stress elements due to the sensitivity of the element thickness on the response. Thus, such models are only recommended if validation with corresponding three-dimensional models and/or field measurements are possible. By allowing separation of the soil-structure interface, the effect of contact nonlinearity on the acceleration response has been more suitable with direct finite element approach - in which static effects of the soil are accounted for - contrary to the simplified nonlinear models with compression springs. / Järnvägssektorn i Sverige står inför utmaningen att utveckla den första höghastighetsbanan med syftet att erbjuda snabbare inhemska och internationella transportalternativ. Passager av höghastighetståg på järnvägsbroar kan orsaka resonans i brons överbyggnad vilket resulterar i höga accelerationer som inte får överskrida begränsningarna i dimensioneringsnormen. I plattrambroar, vilka är främst förekommande i Sverige, utförs broplattan inspänt i rambenen omslutna av jord. Jorden bidrar utöver styvhet, även med material- och strålningsdämpning där vibrationer i jorden inducerade av tågpassager tillåts dissipera. Accelerationerna i brons överbyggnad påverkas av dämpningen och egenfrekvensen av jord-struktur systemet. Med anledning av detta är det väsentligt att undersöka effeken av jord-struktur interaktionen på plattrambroar. I detta examensarbete har en numerisk parametrisk studie utförts för att erhålla kunskap om effekten av den relativa styvheten av broplattan och rambenen på jord-struktur interaktionen av plattrambroar. Fyra spännvidder har undersökts för tre olika randvillkor där i) ingen jord, ii) motfyllning samt iii) halvrymd har beaktats. Analysen utfördes på två- och tredimensionella finita element modeller. Motfyllningen respektive underliggande jord modellerades med finita element på ett direkt- samt förenklat tillvägagångssätt där Kelvin-Voigt modeller och frekvensberoende impedansfunktioner användes. Mellan motfyllningen och rambenen har separation tillåtits där det icke-linjära förhållandet av interaktionen undersöktes med tryckbeteenden för fjädrarna. Resultaten belyser vikten av att inkludera jord-struktur interaktionen i dynamiska analyser p.g.a. ökningen den medför för den modala dämpningen och egenfrekvensen. För korta spännvidder, påvisades det att effekten av motfyllningen var mer framstående för reduktionen av vibrationerna orsakade av tåg. För längre spännvidder framgick det däremot att underjorden hade en större påverkan. Effekten av jord-struktur interaktionen på spännvidderna kvantifierades som ett logaritmiskt samband för den modala dämpningen av första vertikala böjmoden. Tvådimensionella modeller har varit problematiska när plana spänningselement användes p.g.a. känsligheten i responsen orsakad av variationer i elementtjockleken. Därav rekommenderas tvådimensionella modeller endast om validering mot tredimensionella eller fältmätningar är möjliga. När separation tilläts i gränsytan av jord-struktur interaktionen, visade det sig att direkt tillvägagångssätt med finita element var mer lämplig med hänsyn till det icke-linjära kontaktbeteendet. Detta eftersom de statiska effekterna av jorden påverkade accelerationsresponsen markant. De statiska effekterna har inte varit möjliga att simulera i dem förenklade icke-linjära modeller med tryckfjädrar.
|
13 |
Platsgjuten eller prefabricerad plattrambro : En jämförande livscykel- och livscykelkostnadsanalys / Site cast or prefabricated flat frame bridge : A comparative life cycle assessment and life cycle cost analysisSwahn, Trixie, Rashem, Adam January 2018 (has links)
Plattrambron är Sveriges vanligaste typ av bro och utgör nästan hälften av Sveriges brobestånd. I den här studien har det utförts en jämförelse mellan två produktionssätt för plattrambroar utifrån ett livscykelperspektiv. Studien bygger på att jämföra olika produktionsmetoder utifrån kostnad- och miljösynpunkt där förslag till förbättringar redogörs för att förenkla valet av produktionsmetod. Fokus mot hållbar infrastruktur ökar och att ur ett livscykelperspektiv jämföra olika produktionssätt kan leda till minskad miljöpåverkan och vinster ur ett kostnadsperspektiv. Denna fallstudie visar att prefabricerat produktionssätt kan ge stora besparingar med hänsyn till klimat och ekonomi. Fallstudien omfattas av kvalitativa interjuver med aktörer i branschen och beräkningar har utförts enligt livscykelkostnad- och livscykelanalysers normer. Möjlighet till ytterligare materialbesparingar finns för båda produktionssätten om ändring av kraven för brobyggande sker, då krav på utformning hämmar möjligheten till nya och bättre lösningar. Studiens resultat visar att det genom rätt val av produktionsmetod är möjligt att sänka emission av koldioxid, minska energiåtgång och sänka kostnader för infrastrukturen. Ytterligare vinster kan erhållas om ändringar av kraven utförs. / Flat frame bridges are the most common type of bridge in Sweden and constitutes almost half of all bridges in Sweden. In this study, a comparison between two production methods of flat frame bridges from a lifecycle perspective has been conducted. The study is built on comparing production methods from cost and environmental viewpoints where suggestions for improvements are presented to facilitate the choice of production method. Focus on environmentally sustainable constructions is increasing and by comparing different production methods from a lifecycle perspective it is possible to decrease environmental impact and increase cost-efficiency. The results of this case-study show that prefabricated production method offers greater savings regarding environment as well as economy. The possibility of further material savings exists for both production methods, prefabricated and site-cast, if changes of the regulations regarding bridge construction are made, as current regulations on design inhibits possibilities of new and better solutions. The result of the study shows that by choosing the right production method it is possible to decrease emissions of carbon dioxide, reduce energy consumption and costs for the infrastructure. Further gains can be made if regulations are changed.
|
Page generated in 0.0309 seconds