51 |
Quantum-mechanical Ab-initio Calculations of the Properties of Wurtzite ZnO and its Native Oxygen Point Defects.Lamichhane, Aneer 24 July 2018 (has links)
No description available.
|
52 |
Defect Structures in Ordered Intermetallics; Grain Boundaries and Surfaces in FeAl, NiAl, CoAl and TiAlMutasa, Batsirai M. 16 May 1997 (has links)
Ordered intermetallics based on transition metal aluminides have been proposed as structural materials for advanced aerospace applications. The development of these materials, which have the advantages of low density and high operating temperatures, have been focused on the aluminides of titanium, nickel and iron. Though these materials exhibit attractive properties at elevated temperatures, their utilization is limited due to their propensity for low temperature fracture and susceptibility to decreased ductility due to environmental effects. A major embrittlement mechanism at ambient temperatures in these aluminides has been by the loss of cohesive strength at the interfaces (intergranular failure). This study focuses on this mechanism of failure, by undertaking a systematic study of the energies and structures of specific grain boundaries in some of these compounds.
The relaxed atomistic grain boundary structures in B2 aluminides, FeAl, NiAl and CoAl and <I>L</I>1₀ γ-TiAl were investigated using molecular statics and embedded atom potentials in order to explore general trends for a series of B2 compounds as well as TiAl. The potentials used correctly predict the proper mechanism of compositional disorder of these compounds. Using these potentials, point defects, free surface energies and various grain boundary structures of similar energies in three B2 compounds, FeAl, NiAl and CoAl were studied. These B2 alloys exhibited increasing anti-phase boundary energies respectively. The misorientations chosen for detailed study correspond to the Σ5(310) and Σ5(210) boundaries. These boundaries were investigated with consideration given to possible variations in the local chemical composition. The effects of both boundary stoichiometry and bulk stoichiometry on grain boundary energetics were also considered. Defect energies were calculated for boundaries contained in both stoichiometric and off-stoichiometric bulk. The surface energies for these aluminides were also calculated so that trends concerning the cohesive energy of the boundaries could be studied. The implications of stoichiometry, the multiplicity of the boundary structures and possible transformations between them for grain boundary brittleness are also discussed. / Ph. D.
|
53 |
Etude par calcul de structure électronique des dégâts d'irradiation dans le combustible nucléaire U02 : comportement des défauts ponctuels et gaz de fission / Study by electronic structure calculations of the radiation damage in the UO2 nuclear fuel : behaviour of the point defects and fission gasesVathonne, Emerson 20 October 2014 (has links)
Le dioxyde d'uranium (UO2) est le combustible nucléaire le plus largement répandu dans le monde pour alimenter les centrales nucléaires et plus particulièrement les réacteurs à eau pressurisée (REP). En réacteur, la fission des atomes d'uranium crée des produits de fission et des défauts ponctuels dans le matériau combustible. La compréhension de l'évolution de ces dégâts d'irradiation nécessite une approche de modélisation multi-échelle, de l'échelle de la pastille combustible à l'échelle atomique. Nous avons utilisé une méthode de calcul de structure électronique (DFT), pour modéliser les dégâts d'irradiation dans UO2 à l'échelle atomique. Un terme d'interaction Coulombienne de type Hubbard est ajouté au formalisme de la DFT standard pour prendre en compte les fortes corrélations des électrons 5f dans l'UO2. Cette méthode a été utilisée pour étudier les défauts ponctuels dans différents états de charge ainsi que l'incorporation et la diffusion du krypton dans le dioxyde d'uranium. Cette étude nous a permis d'obtenir des données clés pour les modèles aux échelles supérieures mais aussi pour interpréter des résultats expérimentaux. En parallèle de cette étude, trois pistes d'amélioration de l'état de l'art des calculs pour la description de l'UO2 ont été explorées : la prise en compte du couplage spin-orbite, l'application de fonctionnelles permettant la prise en compte des interactions non locales telles que les interactions de van der Waals importantes pour les gaz rares et l'utilisation de la théorie de champ dynamique moyen (Dynamical Mean Field Theory) combinée à la DFT afin de prendre en compte les corrélations dynamiques des électrons 5f. / Uranium dioxide (UO2) is worldwide the most widely used fuel in nuclear plants in the world and in particular in pressurized water reactors (PWR). In-pile the fission of uranium nuclei creates fission products and point defects in the fuel. The understanding of the evolution of these radiation damages requires a multi-scale modelling approach of the nuclear fuel, from the scale of the pellet to the atomic scale. We used an electronic structure calculation method based on the density functional theory (DFT) to model radiation damage in UO2 at the atomic scale. A Hubbard-type Coulomb interaction term is added to the standard DFT formalism to take into account the strong correlations of the 5f electrons in UO2. This method is used to study point defects with various charge states and the incorporation and diffusion of krypton in uranium dioxide. This study allowed us to obtain essential data for higher scale models but also to interpret experimental results. In parallel of this study, three ways to improve the state of the art of electronic structure calculations of UO2 have been explored: the consideration of the spin-orbit coupling neglected in current point defect calculations, the application of functionals allowing one to take into account the non-local interactions such as van der Waals interactions important for rare gases and the use of the Dynamical Mean Field Theory combined to the DFT method in order to take into account the dynamical effects in the 5f electron correlations.
|
54 |
Simulações por dinâmica molecular aplicadas ao estudo de defeitos em cristais coloidais bidimensionais / Simulações por dinâmica molecular aplicadas ao estudo de defeitos em cristais coloidais bidimensionaisSilva, Línder Cândido da 29 August 2008 (has links)
Suspensões coloidais de microesferas de poliestireno carregadas proporcionam um sistema experimental excelente para estudar muitos problemas em física da matéria condensada. Sob condições apropriadas as partículas nessas suspensões podem se auto-organizar em um cristal com ordem de longo alcance, o chamado cristal coloidal. Neste trabalho apresentamos resultados de simulações por Dinâmica Molecular relacionados a defeitos pontuais, vacâncias e interstícios, em um cristal coloidal 2D. Calculamos a energia de formação e a interação destes defeitos pontuais, mostrando que um interstício é mais provável de ser criado do que uma vacância e que a interação entre os defeitos (vacância-vacância e interstício-interstício) é atrativa. Em conjunto esses resultados apontaram que os defeitos pontuais podem afetar o mecanismo de fusão do cristal coloidal 2D. Com relação à dinâmica dos defeitos, o foco foi sobre as vacâncias. Calculamos as entalpias de migração deste defeito de uma forma original, baseada na troca de topologias. Concluímos que a vacância não difunde de acordo com um único mecanismo, mas sim um misto de dois comportamentos, são eles: relação de Arrhenius corrigida e relação de potência com a temperatura. Calculamos também as entalpias e entropias relativas de formação das topologias da vacância, o que possibilitou identificar as topologias mais estáveis. Acreditamos que esses resultados serão importantes para trabalhos experimentais envolvendo interfaces e superfícies sólidas. / Colloidal suspensions of charged polystyrene microspheres provide an excellent experimental system to study many problems in condensed matter physics. Under appropriate conditions the particles in these suspensions organize themselves in a long-range-ordered crystal, the so-called colloidal crystal. In this thesis we report Molecular Dynamics simulations on point defects, vacancies and interstitials, in a 2D colloidal crystal. We have calculated the formation energy and interaction of these point defects, as well as the energy barriers between the various topological configurations that the defects may adopt while in thermal equilibrium. It is shown that the interstitials are more likely to be formed than the vacancies, and the interaction between defects (vacancy-vacancy and interstitial-interstitial) is attractive. Taken together, these results indicate that point defects may affect the melting process of a 2D colloidal crystal. With regard to the dynamics of the defects, emphasis was placed on the vacancies. The enthalpy for migration of a vacancy was calculated on the basis of exchanges between topologies. We concluded that the vacancy does not diffuse according to a single mechanism, but rather through a mixture of two processes: one is a modified Arrhenius mechanism and the other is represented by a power-law dependence on the temperature. We also calculated the relative enthalpies and entropies associated with the formation of the different topologies of vacancies, which allowed identification of the most stable topologies. We believe these results may have important bearing on experimental works involving interfaces and solid surfaces.
|
55 |
Etude des phénomènes de diffusion à l'état solide impliqués dans les réactions hétérogènes gaz-solide : application à la sulfuration de l'oxyde de zinc / Solid-state diffusion phenomena in heterogeneous gas-solid reactions : Application to oxides sulfidationPerrin, Kévin 06 April 2018 (has links)
Les phénomènes de transformation de phases avec interface réactionnelle mobile interviennent dans une grande variété de réactions chimiques et d’applications. Les réactions de sulfuration d'oxydes métalliques mènent par exemple à la formation de phases sulfures dans des applications concernant la purification de gaz ou la préparation de catalyseurs. Ces réactions impliquent entre autres des phénomènes de diffusion des espèces réactives à l’état solide (sous forme atomique ou ionique) à travers la couche de produit formée lors de la réaction (phase oxyde, sulfure ou métal). Dans de nombreux cas, les phénomènes de diffusion à l’état solide ont un impact direct sur les mécanismes ainsi que sur la cinétique globale des réactions, et déterminent le sens de croissance des phases formées. Cette thèse a pour objectif d’apporter une meilleure compréhension des phénomènes de diffusion d’espèces réactives à l’état solide impliqués dans les réactions hétérogènes gaz-solide. En particulier, cette étude porte sur le cas de la réaction de sulfuration de l’oxyde de zinc par H2S menant à la formation de ZnS. L’influence de la structure cristalline, de la présence d’impuretés et/ou de défauts ponctuels natifs ou extrinsèques et l’impact des phénomènes de diffusion sur la cinétique réactionnelle globale ont été étudiés. La stratégie de recherche proposée comporte un volet expérimental via la synthèse et la caractérisation de matériaux dopés, et l’étude de la cinétique de la réaction de sulfuration par thermogravimétrie sous atmosphère réactive. Le travail expérimental a été complété par une approche théorique par dynamique moléculaire permettant la détermination de coefficients de diffusion dans différents systèmes (ZnO et ZnS), mono/polycristallins, et avec/sans présence de dopants. La détermination des processus de diffusion et des paramètres qui la gouvernent permet d’aboutir, in fine, à une meilleure compréhension des réactions hétérogènes solide-gaz. / Phase transition phenomena involving the mobility of the reaction interface are involved in a wide variety of chemical reactions and applications. A good example is the sulfidation reaction experienced by the metal oxide-based materials used in the framework of gas purification or catalysts preparation applications. These reactions involve solid-state diffusion phenomena of the reactive species (atomic or ionic form) through the layer of product formed during the reaction (oxide, sulfide, or metal phase). In many cases, solid-state diffusion has a direct impact on the reaction mechanisms while determining the growth direction of the formed phases, as well as the overall kinetics of the reactions. This PhD-thesis work aims at providing a better understanding of the solid-state diffusion phenomena of reactive species involved in gas-solid heterogeneous reactions. In particular, the study is focused on zinc oxide sulfidation reaction with H2S, in which the influence of the crystal structure of solids, the presence of impurities and / or native or extrinsic point defects, and the impact of diffusion phenomena on the overall reaction kinetics were evaluated. The research strategy relies on a first experimental approach via the synthesis and characterizations of doped materials, followed by the determination of their sulfidation reaction kinetics by thermogravimetry under reactive atmosphere. The experimental work was combined to a theoretical approach based on Molecular Dynamics, which allows the determination of diffusion coefficients in different systems (ZnO and ZnS), mono/polycrystalline, and with/without presence of doping elements. Knowledge of the diffusion processes and of key parameters involved leads to a better understanding of solid-gas heterogeneous reactions.
|
56 |
The role of stress and diffusion in structure formation in semiconductorsBouville, Mathieu 04 June 2004 (has links) (PDF)
This dissertation addresses two aspects of the theory and simulation of stress-diffusion coupling in semiconductors. The first part is a study of the role of kinetics in the formation of pits in stressed thin films. The second part describes how atomic-scale calculations can be used to extract the thermodynamic and elastic properties of point-defects.<br />Recently, pit nucleation has been observed in a variety of semiconductor thin films. We present a model for pit nucleation in which the adatom concentration plays a central role in controlling the morphological development of the surface. Although pits relieve elastic energy more efficiently than islands, pit nucleation can be prevented by a high adatom concentration. Three-dimensional islands act as adatom sinks and the lower adatom density in their vicinity promotes pit nucleation. Thermodynamic considerations predict several different growth regimes in which pits may nucleate at different stages of growth depending on the growth conditions and materials system. When kinetics are taken into account, the model predicts a wide range of possible morphologies: planar films, islands alone, island nucleation followed by pit nucleation, and pits alone. The model shows good agreement with experimental observations in III-V systems given the uncertainties in quantifying experimental parameters such as the surface energy.<br />The same stresses which lead to the nucleation of surface features can have a significant effect on the stability of dopant profiles by altering diffusivities and by inducing chemical potential gradients. We perform an extensive set of empirical calculations regarding a simple model point-defect, a vacancy in the Stillinger Weber model of silicon. In the context of these calculations we devise a method to extract the strength of the elastic relaxation in the vicinity of the defect. This quantity is extracted from the leading order term which must be evaluated sufficiently far from the defect and the boundaries. It is also directly related to the formation volume, the thermodynamic quantity that couples the defect free energy to the externally applied stress. We propose that this method of extracting the formation volume is more accurate than a direct measurement of the surface relaxation for large system sizes.
|
57 |
Stress-defect transport interactions in ionic solidsSwaminathan, Narasimhan 19 December 2008 (has links)
Mixed ionic electronic conductors (MIEC) have gained importance recently due to their roles in energy conversion devices such as solid oxide fuel cells (SOFC). Recent experimental data have shown that an increased vacancy concentration in a MIEC changes its elastic modulus and causes volumetric expansion. Since the MIEC in a device is constrained mechanically, the volumetric changes can induce substantial mechanical stresses. Such stresses not only lead to premature failure but can also alter the electrochemical performance of the device. In order to fully understand the interactions between stresses and defect transport a coupled theory is needed.
This thesis develops a framework to study stress-defect transport interactions. The framework is based on a proper construction of the stress dependent electrochemical potential by introducing two material properties, namely the coefficient of chemical expansion (CCE) and the open system elastic constants (OSEC). The CCE characterizes the strains due to non-stoichiometry while the OSEC represents the stoichiometry dependent elastic stiffness. In this work these parameters are determined using atomistic simulations. The system of equations that govern the coupled electrochemical and mechanical fields is solved using a combination of numerical and analytical techniques. The developed solutions are analyzed to provide insights into the nature and the extent of the interactions. It is found that the non-stoichiometry-induced stress is in the same order of magnitude or even higher than that induced by thermal mismatch in a typical SOFC. In the vicinity of material flaws (cracks, voids, etc.), such stresses are further intensified which may cause fracture of the MIEC. In addition, non-stoichiometry-induced stresses can significantly alter the distribution of point defects, thus affecting the electrochemical performance of the ionic device. Furthermore, the non-stoichiometry induced stresses increases the thickness of the surface charge layer.
The thermodynamic framework and the computational algorithms developed in this work provides effective methodologies and tools to analyze stress-defect transport interactions in ionic solids for designing and reliability analysis of ionic devices such as fuel cells, oxygen pumps, chemical sensors, etc.
|
58 |
Thermal stability of defects in strontium titante [i.e., titanate] susbtrates for multiferroic materialsJeddy, Shehnaz. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2008. / Description based on contents viewed May 30, 2008; title from title screen. Includes bibliographical references (p. 50-51).
|
59 |
Propriedades dosimetricas de vidros comerciais e de areia para doses altasTEIXEIRA, MARIA I. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:49:14Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:13Z (GMT). No. of bitstreams: 1
09820.pdf: 9119289 bytes, checksum: e59c57eae7bdaff76ea2557cc6f6a4d1 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
60 |
Estudo Químico-Quântico do Óxido Ti(1-x)CexO2-δ na Fase Anatase / Quantum Chemical Study of Ti(1-x)CexO2-δ Oxide in Anatase PhaseAlbuquerque, Anderson dos Reis 02 September 2014 (has links)
Made available in DSpace on 2015-05-14T13:21:41Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 10515395 bytes, checksum: 24068367353a0ab8bc6c91ecaae5abf5 (MD5)
Previous issue date: 2014-09-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Titanium dioxide (TiO2) in anatase phase has been the most studied metal oxide in the last two decade due to its potential technological aplication in many areas, such as dyes, (photo)catalysts and solar cells. Computational and experimental methods has been employed to understand the mechanical, electronical and catalytic properties of anatase. In this context, the introduction of dopants and induction of point deffects formation (mainly oxygen vacancies) are responsible for tunning those properties in many situatuions, e.g. increasing the (photo)catalytic efficience. In the present study, we investigated the effect of Ce-doping on the formation of oxygen vacancy and reduced Ti3+ and Ce3+ centers in anatase TiO2 (bulk and (001) surfaces) by means of computational quantum chemical calculations. All calculations were performed at the density functional theory (DFT) level taking into account the periodicity of the systems. The bulk phase was initially studied without dopant, and the Grimme DFT-D2 dispersion potential was reparameterized for octahedral [TiO6] interaction in anatase polymorph within the B3LYP (GTO) approach (hereafter named B3LYP-D*). Several properties were calculated from bulk with B3LYP-D* in good agreement with experimental values from anatase single crystals, such as: Wulff construction of single crystal in thermodynamic equilibrium, elastic constants, infrared and Raman vibrational frequencies, and electronic structure calculations (band structure and density of states). Two DFT approachs were used for mitigate the self-interaction error (SIE) in both reduced and/or Ce-doped systems: the on-site Dudarev DFT+U correction and the hybrid B3LYP (20% HF) functional with plane-wave or Gaussian-type basis set. Only a small local perturbation was associated with the Ce-dopant introduction in the octahedral site (bulk) and Ce(5c) (surface). The Ce-doped systems presented lower oxygen vacancy formation energy than pristine TiO2. The most stable VO configuration in the bulk were in the next neighbors from the reduced [CeO6]/ center, instead the low-coordinated [CeO5] centers. Similarly, the dopant on the subsurface distoted octahedral [CeO6]d site of (001) surface boosted the remotion of O(2c) in the outmost layer of the surface. This behavior was not observed with the dopant on the low-coordinated [CeO5] site. The Ti3+ [3d 1] and Ce3+ [4f 1] midgap states were found up to ~ 1.0 eV bellow de conduction band. These founds are in agreement with experimental evidences of the enhanced facilitation of VO formation in Ce-doped anatase, and superior (photo)catalytic activity when compared with undoped TiO2. In the general way, the vacancy formation energy decreased significantly in the following situations: (i) oxide reduction in the presence of Ce as dopant; (ii) VO in the nearest neighbor sites of the reduced [CeO6]/ octahedra (iii) introduction of two Ce dopants around VO; (iv) VO in the outmost layers plus [CeO6]/ at the subsurface. / Dióxido de titânio (TiO2) na fase anatase tem sido o óxido mais estudado nas últimas décadas devido à sua potencial aplicação tecnológica em diversas áreas, dentre as quais como pigmento, (foto)catalisador e em células solares. Não obstante, métodos experimentais e computacionais têm sido empregados na compreensão de suas propriedades mecânicas, eletrônicas e catalíticas da anatase. Nesse contexto, a introdução de dopantes com formação de defeitos pontuais do tipo vacâncias de oxigênio tem sido responsável por aumentar a eficiência desse material como catalisador sobre muitas reações. No presente estudo, investigamos, por meio de cálculos computacionais, o efeito da dopagem do TiO2 anatase com o lantanídeo Ce sobre a formação de vacâncias de oxigênio e exploramos suas consequências na formação de centros reduzidos Ti3+ e Ce3+, no bulk e na superfície (001). Todos os cálculos foram realizados ao nível da teoria do funcional da densidade (DFT) utilizando códigos computacionais que levam em consideração a periodicidade dos sistemas cristalinos (2D para superfícies ou 3D para bulk). Para uma maior compreensão da anatase sem o dopante, exploramos inicialmente o efeito das interações de dispersão entre os poliedros [TiO6] e reparametrizamos o potencial de Grimme DFT-D2 com funções de base GTO (o qual chamamos B3LYP-D*), a partir do qual várias propriedades estruturais foram obtidas, como construção de Wulff do hábito cristalino sob equilíbrio termodinâmico, propriedades elásticas, vibracionais e eletrônicas. Na presença do dopante e com os sistemas reduzidos, duas principais metodologias foram adotadas na tentativa de reduzir o erro de autointeração da DFT: o uso do funcional híbrido B3LYP e a correção de Dudarev DFT+U. Orbitais do tipo Gaussiana e ondas planas foram utilizadas como funções de base. Apenas uma pequena deformação local ocorreu com a introdução do dopante no sítio octaédrico do Ti no bulk e no sítio Ce(5c) da superfície. Em ambos bulk e superfície (001) a introdução do dopante levou à diminuição da energia de formação de VO. As configurações mais estáveis de VO no bulk ocorreram nos vizinhos próximos ao octaedro reduzido [CeO6]/ em vez daquelas que envolviam a diminuição da coordenação do dopante para [CeO5]. Analogamente, a presença do dopante na subsuperfície da (001) formando o poliedro distorcido [CeO6]d impulcionou a remoção de um O(2c) na camada mais externa da superfície, o que não foi observado quando a dopagem acontecia na última camada de cátions com coordenação [CeO-5]. Assim como no bulk, os estados intermediários no band gap associados com a vacância mais estável na superfície (001) foram referentes ao Ti3+ [3d 1] e Ce3+ [4f 1] localizados em torno de 0.5-1.0 eV abaixo da banda de condução, de acordo com achados experimentais e evidências no aumento da atividade (foto)catalítica dado pela criação destes canais de transferência eletrônica. De modo geral, a energia de formação das vacâncias de oxigênio diminuiu consideravelmente nas seguintes situações: (i) redução do óxido na presença do dopante Ce, (ii) desde que os sítios de criação das VO localizem-se nos primeiros vizinhos ao octaedro [CeO6]/ distorcido por expansão polarônica, (iii) introdução de dois dopantes, em direções opostas, em torno de VO, e (iv) criação de VO nas camadas mais externas da superfície, desde que o dopante esteja na subsuperfície e com coordenação [CeO6].
|
Page generated in 0.0445 seconds