Spelling suggestions: "subject:"polarimetric""
81 |
Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devicesHutsel, Michael R. 14 November 2011 (has links)
Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military.
As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices.
To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in optical fibers, there is no existing methodology that meets all of these requirements. Therefore, the primary objective of the research presented in this thesis was to provide a methodology that is capable of characterizing concurrently the three-dimensional RSD and RID in optical fibers and fiber-based devices. This research represents a detailed study of the requirements for characterizing optical fibers and how these requirements are met through appropriate data analysis and experimental apparatus design and implementation.
To validate the developed methodology, the secondary objective of this research was to characterize both unperturbed and modified optical fibers. The RSD and the RID were measured in a standard telecommunications-grade optical fiber, Corning SMF-28. The effects of cleaving this fiber were also analyzed and the longitudinal variations that result from cleaving were explored for the first time. The fabrication of carbon-dioxide-laser-induced LPFGs was also examined. These devices provide many of the functionalities required for fiber-based communications components as well as fiber-based sensors, and they offer relaxed fabrication requirements when compared to LPFGs fabricated by other methods.
The developed methodology was used to perform the first measurements of the changes that occur in the RSD and the RID during LPFG fabrication. The analysis of these measurements ties together many of the existing theories of carbon-dioxide-laser-induced LPFG fabrication to present a more coherent understanding of the processes that occur. In addition, new evidence provides detailed information on the functional form of the RSD and the RID in LPFGs. This information is crucial for the modeling of LPFG behavior, for the design of LPFGs for specific applications, for the tailoring of fabrication parameters to meet design requirements, and for understanding the limitations of LPFG fabrication in commercial optical fibers. Future areas of research concerning the improvement of the developed methodology, the need to characterize other fibers and fiber-based devices, and the characterization of carbon-dioxide-laser-induced LPFGs are identified and discussed.
|
82 |
Experimental and Theoretical Studies of Highly-Excited Molecules at a Wide Range of Internuclear DistancesPhilippson, Jeffrey 31 January 2012 (has links)
Experimental and theoretical investigations of highly-excited molecules are presented
that advance the current state of knowledge of intramolecular interactions in highly-excited molecular states.
A quantitative analysis of intramolecular interactions in excited hydrogen fluoride
is presented, in which the rotational levels of the B singlet-Sigma+, v = 29 vibronic level are shown to mix with the corresponding e-parity components of the C singlet-Pi, v = 0 level. Extrapolating the experimentally-derived mixing parameter to the unperturbed limit reveals an unperturbed value of the aF hyperfine parameter of 4132(25) MHz.
Coupling energies between the ion-pair curve and long-range asymptotes of covalent states are calculated for a large number of alkali–alkali collision channels, revealing
the dependence on the internuclear distance at which the crossing takes place and
forming a foundational step for the calculation of cross-sections and rate coefficients for different charge-exchange and other processes.
To advance the experimental investigation of these systems, optical instrumentation
and associated control systems have been designed and constructed for cooling
and trapping lithium in preparation for experimental studies of cold-collisions that
will be informed by, and ultimately a test of, some of these calculated ionic–covalent
coupling energies. A novel scheme for systematic optimization of peak-locking has been developed and implemented, providing a rigorous assessment of the optimal experimental parameters. A side-of-filter offset-locking scheme was implemented,
characterizing and correcting for a previously unexplained offset in the error-signal.
A novel calibrated polarimetry scheme is demonstrated, correcting for the primary
sources of uncertainty relating to manufacturing tolerances and experimental errors. The calibrated set of polarization measurements is used to examine the purity of the optical polarization state in the light sources to be used for trapping lithium. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2012-01-31 11:30:22.479
|
83 |
Design and development of a microwave multifrequency polarimetric scatterometer for biosphere remote sensingStjernman, Anders January 1995 (has links)
Microwave radar and radiometer techniques are used to gather crucial information about the earth and its atmosphere. The ERS-1, JERS-1, RadarSAT and NASA’s Mission to Planet Earth projects are designed to study the changing global environment. In all these endeavors, the key instrument is the radar or scatterometer. The advantage of microwave radar is that it is hindered very little by clouds, fog or solar radiation. Polarimetrie sensors like the shuttle-borne SIR-C radar, provides additional information compared to single polarization systems. Correct interpretation of polarimetrie data necessitates proper understanding of the scattering mechanism. Thus theory of polarization synthesis is discussed. Solution to the Kennaugh eigenvalue problem for point targets is derived. Polarimetrie signatures of point targets are shown as surfaces of spherical co-ordinates based on the Poincare sphere. Statistics of the covariance matrix elements for distributed targets are presented. The main topic of this research report is the design and development of a multifrequency, polarimetrie scatterometer for biosphere remote sensing. The system was developed using a standard HP network analyzer, a crossed log-periodic dipole antenna and a reflector. The scatterometer functions in a linear polarization basis between the L- and X-bands and gathers full-polarimetric information. The standard S-parameter measurements using the network analyzer were related to surface and volume scattering coefficients of rough surface, snow cover and vegetation media. The scatterometer measurements were carried out in the frequency domain to make use of narrow band filters in the receiver chain. The fast Fourier transform was used to convert the frequency domain measurements to the time domain. The range resolution of the system was 20 cm; azimuthal and elevation resolutions are determined by the antenna beam widths. Range side lobes were reduced by making use of appropriate weighting (Kaiser-Bessel window) functions. In the process of receiver design, we developed a number of signal processing techniques which are illustrated using appropriate numerical examples. The accuracy of target characterization depends on the quality of scatterometer calibration. A novel technique to estimate the absolute gain and crosstalk of the radar system was developed. Using a distortion matrix approach, the cross-polarization response of the system was improved by 10 to 25 dB. The radar measurements were validated by comparing point target radar observations with the corresponding theoretical values. Also, measurements of fading decorrelation distance and decorrelation bandwidth of rough surfaces were in good agreement with the theory. Backscatter observations of vegetation and snow cover were comparable to earlier published values for a similar environment. Based on initial test results and operations capability, we propose to use the present scatterometer for ground-truthing in support of ERS-1 missions. Direct comparisons of electromagnetic backscatter coefficients are possible between the ERS-1 and the present scatterometer. These joint studies are beneficial for developing inverse scattering techniques, designing new experiments and calibrating ERS-1 radar systems for distributed target environments. / <p>Diss. Umeå : Umeå universitet, 1995</p> / digitalisering@umu
|
84 |
On the estimation of physical roughness of a marginal sea ice zone using remote sensingGupta, Mukesh 10 March 2014 (has links)
This thesis provides insight into techniques for the detection and classification of various marginal ice zone roughnesses in the southern Beaufort Sea using in situ and satellite-based microwave remote sensing. A proposed model of surface roughness shows the dependence of circular coherence, a discriminator of roughness, on the roughness and dielectrics. A relationship between ice slopes in azimuth and range direction is derived. Microwave brightness temperature of open water is significantly correlated with wave height but not with the wind speed, having the strongest correlations for the H-polarization at both 37 and 89 GHz. A modified formula for the relationship between non-dimensional form of energy and wave age at wind speeds 0−10 m/s is obtained. The brightness temperature (April−June) of sea ice at H-polarization of 89 GHz is found to decrease with increasing roughness, and is attributed to the dominant contributions from rapidly varying thermodynamic properties of snow-covered sea ice.
|
85 |
Measurement of complex ultrashort laser pulses using frequency-resolved optical gatingXu, Lina 06 July 2009 (has links)
This thesis contains three components of research: a detailed study of the performance of Frequency-Resolved Optical Gating (FROG) for measuring complex ultrashort laser pulses, a new method for measuring the arbitrary polarization state of an ultrashort laser pulse using Tomographic Ultrafast Retrieval of Transverse Light E-fields (TURTLE) technique, and new approach for measuring two complex pulses simultaneously using PG blind FROG.
In this thesis, we compare the performance of three versions of FROG to measure complex ultrashort laser pulses: second-harmonic-generation (SHG) FROG, polarization-gate (PG) FROG, and cross-correlation FROG (XFROG). We found that the XFROG algorithm achieves 100% convergence, while PG FROG and SHG FROG GP algorithm achieve 100% convergence after doing the noise deduction and increasing the sampling range.
The second part of this thesis describes a method for measuring the intensity, phase and the complete polarization state of a laser pulse having a time-dependent polarization state (i.e. a polarization shaped pulse). This technique is called tomographic ultrafast retrieval of transverse light E-fields (TURTLE). TURTLE typically involves making three FROG measurements: one of the intensity and phase of the pulse's horizontal polarization component, one of its vertical component, and another of the 45o component. Performing a simple minimization using these three FROG measurements, the time-dependent polarization state of the ultrashort pulse can be determined.
The third part of this thesis introduces a method for measuring two complex pulses simultaneously using a single FROG device. This technique is based on Polarization-gate (PG) FROG and it is called PG blind FROG. It involves two measurements: One of them is a PG FROG trace using the intensity of pulse 1 to gate pulse 2 and other one is the PG FROG trace using the intensity of pulse 2 to gate pulse 1. An iterative phase retrieval algorithm based on generalized projection (GP) is used to reconstruct the intensity and phase of these two pulses. This approach is an elegant way to measure complex and/or very spectrally broad pulses such as those due to super continuum.
|
86 |
Akreující černé díry prostřednictvím rentgenové polarimetrie / Accreting black holes via X-ray polarimetryMikušincová, Romana January 2018 (has links)
Black hole spin is an essential parameter, for it provides us with the infor- mation on the black hole formation and growth. In this Thesis, we simulated observations for an upcoming X-ray polarimetric mission IXPE (Imaging X- ray Polarimetry Explorer) with the aim to study the robustness of black hole spin and inclination measured via X-ray polarimetry. To simulate polarization spectra, we used a multicolor blackbody emission model accounting for thermal radiation from the accretion disk. For the case of maximally rotating black hole (spin a = 0.998), we were able to reconstruct both spin and inclination of the system with a high precision (∆a ≤ 0.2 for spin and ∆θ ≤ 15 deg for inclination). For less rotating black holes, the spin was correctly recovered, but with a large uncertainty. The inclination is well constrained for any spin value. We conclude that polarimetric measurements will be useful to make independent black hole spin measurements, that would be compared with the spectral-fitting and timing methods. Therefore, X-ray polarimetric missions will be highly desirable. 1
|
87 |
Imagerie polarimétrique adaptée en lumière cohérente / Adapted Polarimetric Imaging with Coherent LightUpadhyay, Debajyoti 14 February 2014 (has links)
Nous proposons dans cette thèse d’étudier une méthode d’imagerie qui s’adapte à la scène étudiée en utilisant des états polarimétriques choisis sur critères physiques pour optimiser le contraste polarimétrique en 2 zones aux propriétés polarimétriques différentes. En prenant en compte le bruit de Grenaille du détecteur, cette nouvelle technique d’imagerie à 2 canaux nommée APSCI montre un gain en contraste quantifié par la distance de Bhattacharyya pouvant atteindre un facteur 10 par rapport à l’imagerie de Mueller. D’autre part, elle utilise la totalité de l’information polarimétrique de la scène pour générer une seule image au contraste optimum ce qui la rend particulièrement performante pour distinguer deux zones aux propriétés polarimétriques légèrement différentes. La solution analytique complète de ce problème est proposée au chapitre suivant avec des illustrations associées. Le modèle proposé permet, en plus d’une interprétation physique, de quantifier les performances limites de la méthode APSCI en fonction des matrices de Mueller des 2 objets à discerner. Le chapitre suivant est consacré à l’étude des performances de cette méthode soumise au bruit optique de tavelure de cible. Les simulations numériques montrent que les performances de cette méthode en terme de contraste polarimétrique restent relativement robustes et souvent très supérieures à celles obtenues par l’imagerie de Mueller classique. Le dernier chapitre consiste à décrire l’implémentation expérimentale nécessaire à l’adaptation d’un imageur de Mueller en imageur APSCI en vue d’obtenir un imageur hybride Mueller/APSCI. La méthode APSCI nécessite de pouvoir utiliser en émission et en projection lors de la détection. / We propose in this thesis to study and imaging method which is adapted to the scene under investigation by the use of specific polarimetric excitations. The scenes under inversigation have two separate regions with different polarimetric properties. The specific fully polarized state of illumination is found by the physical criteria for oprimizing the polarimetric constrat in two aereas with different polarization properties. Taking into account the Shot noise of the detector, this new 2 channel imaging technique named APSCI, shows a gain in contrast quantified by the Bhattacharyya distance of up to a factor of 10 compared to what is achievable from classical Mueller imagnin. On the other hand, it uses the full polarimetric information of the scene to generate a single image at optimum contrast which makes it particularly effective to distinguish two distinct areas with slightly different polarization properties. The complete analytical solution of this problem is proposed in the next chapter with associated illustrations. The proposed model allows, in addition to a physical interpretation of the imaging problem, to quantify the limits of APSCI method based on evaluated Mueller matrices of the scene. Furthermore the relative performance of APSCI vs Classical Mueller Imaging (CMI) associated to polar decomposition has been studied numerically. Finally we have setup an hybrid CMI-APSCI imaging setup by indigenous calibration technique with a polarimetric precession of approximately 1% when room temperature varies around 1 degree C.
|
88 |
Espectropolarimetria e polarimetria baseadas em cristais birrefringentes para as regiões espectrais do visível e infravermelho próximo / Spectropolarimetry and polarimetry based on birefringent crystals for the spectral regions of visible and near infraredRibeiro, Lívia Paulia Dias, 1979- 21 August 2018 (has links)
Orientador: Celio Pasquini / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-21T20:32:18Z (GMT). No. of bitstreams: 1
Ribeiro_LiviaPauliaDias_D.pdf: 4837120 bytes, checksum: 765fabab75a97dbaab34799ef8208379 (MD5)
Previous issue date: 2012 / Resumo: Dois novos instrumentos analíticos, sem o uso de partes móveis, para obtenção de medidas polarimétricas nas regiões do visível (VIS) e infravermelho próximo (NIR) são descritos. Esses equipamentos consistem de um Polarímetro VIS/NIR com fonte de radiação tipo laser de diodo (532 nm, 650 nm e 1064 nm) e um Espectropolarímentro VIS dedicado à obtenção de curva de Dispersão Óptica Rotatória (ORD) e de espectro de absorção, simultaneamente. O método de determinação da rotação óptica empregado nos instrumentos utiliza a equação a = (45 - b)°, onde b é determinado pela função arco tangente da razão dos campos elétricos dos dois feixes produzidos pelo analisador, o qual é constituído por um cristal birrefringente. No desenvolvimento do polarímetro foram avaliados dois analisadores, Glan Laser e Cristal de Wollaston. O instrumento apresentou precisão de 0,003°, e o uso do Cristal de Wollaston permitiu torná-lo mais robusto e compacto, possibilitando que o equipamento possa, eventualmente, ser empregado em controle de qualidade de processos industriais. O espectropolarímetro utiliza um Filtro Óptico Acústico Sintonizável (AOTF), que opera na região do visível (450 nm a 800 nm), como monocromador e analisador simultaneamente, e com características inéditas para esse tipo de equipamento. A melhor precisão, de 0,009°, foi verificada para a media de 20 varreduras. Quando o instrumento é empregado para medida de rotação óptica na presença de uma espécie absorvente, a curva de ORD é imune a absorbância de até 0,3. Estes equipamentos contribuem para o avanço da área da polarimetria, uma vez que apresentam configurações inovadoras que as diferenciam dos equipamentos comercialmente disponíveis, pois nestes, os analisadores são girados mecanicamente para a determinação do ângulo de rotação do plano da radiação polarizada / Abstract: Two new analytical instruments, which preclude of any moving parts, are described to obtain polarimetric measurements in the visible (VIS) and near-infrared (NIR) spectral regions. These instruments consist of a VIS/NIR polarimeter with diode lasers as radiation source (532, 650 and 1064 nm) and a VIS spectropolarimeter aimed at simultaneously obtaining the optical rotatory dispersion (ORD) curve and absorption spectrum of samples. The method employed to determine the optical rotation in both instruments uses the equation a = (45 - b)°, where b given by arc tangent function ratio between the electrical fields of the beams produced by the polarization analyzer element, made of a birefringent crystal. The polarimeter design was evaluated using two analyzers, a Glan Laser and a Wollaston crystal. The instrument is capable of attaining a repeatability of 0.003°, and, when it uses a Wollaston crystal, to become an instrument more compact and robust, which could be used for in-line measurements of industrial processes. The spectropolarimeter employs an Acousto-Optical Tunable Filter (AOTF) operating as a wavelength selector in visible region (450-800 nm) and polarization analyzer element. This instrument is capable of generating absorption and optical rotation spectra of samples simultaneously, a new characteristic, considering this type of equipment. The repeatability of 0.009° was obtained for the average of 20 scans. When the optical rotation is measured in the presence of absorbent substance the ORD curve is immune to a maximum absorbance of 0.3. The instruments contribute to an important advance in polarimetry, as they show innovative designs, distinct from commercially available instruments, where the analyzers are rotated mechanically, aiming at the determination of the angle of the polarization plane / Doutorado / Quimica Analitica / Doutora em Ciências
|
89 |
Traitements tomographiques pour la caractérisation de forêts tropicales à l'aide des données SAR polarimétriques / Tropical forest biomass estimation using polarimetric SAR tomographyEl Hajj Chehade, Bassam 02 October 2017 (has links)
Dans le cycle de carbone à l'échelle de la planète, la contribution des forêts tropicales, en tant que stock de carbone, est déterminante. Les études actuelles montrent que la connaissance précise de la biomasse forestière globale est nécessaire pour les modèles de prévision. C'est dans ce contexte que le projet BIOMASS est choisi par l'Agence spatiale européenne (ESA) comme une phase A du programme «Earth Core Mission». L'objectif de cette mission innovatrice est l'utilisation d'un système d'imagerie polarimétrique fonctionnant en bande P (435 MHz) pour la mesure de la biomasse forestière. La définition actuelle de la mission prévoit un mode tomographique rassurant une imagerie tri-dimentionnelle (3-D) de la forêt. Dans le cadre du projet BIOMASS, cette thèse de doctorat vise à développer une nouvelle stratégie pour la télédétection de la biomasse dans les forêts tropicales en utilisant des données multi-baseline acquises par le radar à ouverture synthétique (SAR) en bande P. Une approche originale consite à combiner la tomographie et le modèle RvoG (Random-Volume-over-Ground) établi et vérifié avec la technique PolInSAR (polarimetric SAR Interferometry). L'environnement forestier peut être décrit avec précision par un modèle polarimétrique multicouche (sol et succession de couches végétales). Une généralisation multi-baseline du modèle RVoG implique un certain nombre de paramètres qui peuvent être estimés à partir des données SAR en utilisant des méthodes spectrales haute résolution. Ainsi, une cartographie de la forêt et du sol peut être réalisée à l'aide de données tomographiques. De plus, la capacité des techniques tomographiques permet d'estimer la distribution verticale de la puissance rétrodiffusée. Ainsi, une information précise sur la biomasse peut être extraite de la puissance mesurée dans un domaine adapté à la couche de végétation. Cependant, cette puissance mesurée peut être fortement affectée par l'écho du sol dû à la contribution de double rebond. Et par suite, le principal défi peut être résumé par l'élaboration d'un nouvel estimateur de la biomasse forestière lié à une puissance rétrodiffusée mesurée avec une polarisation et un domaine vertical, tous les deux sont adaptés à la couche de végétation. Les algorithmes développés pour la cartographie de la forêt, l'estimation et la simulation de la biomasse sont appliqués et validés sur des données SAR aéroportées réalisées lors de la campagne TROPISAR en Guyane. / Forested areas cover one third of earth's land surface and their contribution in the storage of carbon is decisive. Current studies show that the accurate knowledge of global forest biomass is necessary for the prediction of climate changes on the planet. In this context, the BIOMASS project is selected by the European Space Agency (ESA) as Phase A of the 'Earth Core Mission' program. This highly innovative mission consists of the use of a polarimetric imaging radar operating at P band (435 MHz) for the measurement of forest biomass. The current definition of the mission provides a three-dimensional imaging (3-D) of the forest with both tomographic and multi-pass interferometric modes. In the framework of this project, this PHD thesis aims to develop a novel strategy for the remote sensing of the biomass within the dense tropical forests by processing on multi-baseline P-band Synthetic Aperture Radar (SAR) data. An original approach combines the possibilities of 3-D exploration tomography and the Random-Volume- over-Ground (RVoG) model established and verified with PolInSAR technique (Polarimetric Interferometry SAR). The forested environment can be accurately described by a polarimetric multi-layer model (soil and a succession of vegetationlayers). A multi-baseline generalization of the RVoG model involves a certain number of parameters which must be estimated from radar observation data by using High- Resolution spectral estimation tomographic methods. Thereby, a cartography of the forest and its underlying ground can be made using tomographic data. Furthermore, the capacity of the tomographic techniques on 3-D imaging allows an estimation of the vertical distribution of the backscattered power. Thus, an accurate biomass information may be extracted from the power measured at a domain adapted to the canopy layer. However, this measured backscattered may be strongly affected by the ground echo due to the double bounce contribution. The main challenge of this thesis is to establish a novel biomass estimator related to a backscattered powermeasured with a polarimetric channel and at a vertical domain, both adapted to the canopy layer. The proposed algorithms of forest cartography and biomass estimation are applied and validated on Airborne P-band SAR data realized on the TROPISAR campaign in French Guyana.
|
90 |
Broadband IR stokes polarimetry for the electro-optic characterization of cadmium zinc tellurideFitzGerald, William 21 December 2017 (has links)
The infrared portion of the electro-magnetic spectrum is a challenging region in which
to perform optical techniques, limited by both device efficiency and availability. In
this dissertation, a new optical technique is introduced to facilitate polarization state
measurement across the mid-IR. In addition, cadmium zinc telluride (CZT) is investigated
as a potential new material suitable for electro-optic devices which function in the mid-IR,
while also being characterized by other optical analysis methods.
Thin film interference is discussed as it relates to optical techniques and electronic
devices. A Stokes polarimeter is used to study the oxide development on the surface of
CZT electronic devices, and the effect of natural thin films on substrates used in optical
techniques is discussed. In particular, the impact of thin film interference on sum-frequency generation spectroscopy measurements of methyl group orientation are assessed.
An FTIR source operated in step-scan mode is used to create a broadband, IR Stokes
polarimeter which measures the polarization state of light from 2.5-11 μm simultaneously.
Its design, involving two photo-elastic modulators and an analyzer, and theory are described in detail. This instrument is demonstrated by measuring linearly polarized light, and is applied to the measurement of the refractive index dispersion of quartz from 2.5-4 μm, which goes beyond the limits of literature values.
Electro-optic crystals of CZT with electrodes of gold and indium are characterized
at each wavelength in the mid-IR in terms of their electro-optic effects and apparent
depolarization using the Stokes polarimeter. The material displays high-resistivity,
allowing it to be operated with up to 5 kV applied DC voltage. The linear electro-optic
effect is observed, but overall properties of the samples are found to be heavily dependent
on the choice of metal for the electrodes. With a high-work function electrode material
in gold, a large depletion region is created when high voltage is applied, which leads to a
gradient in electric field throughout the material. This causes a beam of light transmitted through it to experience a distribution of electro-optic behaviours, which leads to overall
depolarization of the light. Indium’s work function is lower than gold’s, and is closer to
that of CZT. With indium electrodes, the electric field is found to be more consistent, and
behaviour is much closer to ideal.
The electro-optic effect of CZT is also characterized with AC applied voltage in order
to assess its suitability to AC applied voltage applications. The power supply used for
this was limited to 60 Hz, which precludes a complete characterization in this regard, but
unexpected behaviour was seen. A methodology utilizing an oscilloscope and FTIR was
developed in order to more completely understand the material response, and divergent
behaviour with positive and negative voltage was found. / Graduate / 2018-12-18
|
Page generated in 0.0992 seconds