41 |
Characterization of domain switching and optical damage properties in ferroelectricsHirohashi, Junji January 2006 (has links)
Nonlinear optical frequency conversion is one of the most important key techniques in order to obtain lasers with wavelengths targeted for specific applications. In order to realize efficient and tailored lasers, the quasi-phase-matching (QPM) approach using periodically-poled ferroelectric crystals is getting increasingly important. Also understanding of damage mechanisms in nonlinear materials is necessary to be able to design reliable and well working lasers. This is especially true for high power application lasers, which is a rapidly growing field, where the damage problem normally is the ultimate limiting factor. In this thesis work, several promising novel ferroelectric materials have been investigated for nonlinear optical applications and the emphasis has been put on QPM devices consisting of periodically-poled structures. The materials were selected from three different types of ferroelectric materials: 1) MgO-doped stoichiometric LiNbO3 (MgO:SLN) and LiTaO3 (MgO:SLT), and non-doped stoichiometric LiTaO3 (SLT), 2) KTiOPO4 (KTP) and its isomorphs RbTiOPO4 (RTP), and 3) KNbO3 (KN). The focus in our investigations have been put on the spontaneous polarization switching phenomena, optimization of the periodic poling conditions, and the photochromic optical damage properties which were characterized by the help of blue light-induced infrared absorption (BLIIRA) measurements. With electrical studies of the spontaneous polarization switching, we were able to determine quantitatively, and compare, the coercive field values of different materials by applying triangularly shaped electric fields. We found that the values of the coercive fields depended on the increase rate of the applied electric field. The coercive field of KN was the lowest (less than 0.5 kV/mm) followed by the ones of KTP, SLT, and MgO:SLT (1.5 to 2.5 kV/mm). MgO:SLN, and RTP had relatively high coercive fields, approximately 5.0 to 6.0 kV/mm, respectively. Based on the domain switching characteristics we found, we successfully fabricated periodically-poled devices in all of the investigated materials with 30 μm periodicities and sample thickness of 1 mm. Blue light-induced infrared absorption (BLIIRA) has been characterized for unpoled bulk and periodically-poled samples using a high-sensitivity, thermal-lens spectroscopy technique. SLT showed a large photorefraction effect and the BLIIRA signal could not be properly measured because of the large distortion of the probe beam. The rise and relaxation time of BLIIRA, after switching the blue light on and off was in a time span of 10 to 30 sec except for KTP and its isomorphs, which needed minutes to hours in order to saturate at a fixed value. KN and MgO:SLN showed the lowest susceptibility to the induced absorption. Periodic poling slightly increased the susceptibility of KTP, MgO:SLT, and KN. Relatively high thresholds were observed in MgO:SLT and KN. By increasing the peak-power intensity of the blue light, the induced absorption for MgO:SLN, KTP and KN saturated at a constant value while that of MgO:SLT increase in a constant fashion. This trend is critical issue for the device reliability at high-power applications. / QC 20100830
|
42 |
Grafeno em substratos transparentes dielétricos para aplicações fotônicasRomagnoli, Priscila 04 May 2017 (has links)
Submitted by Rosa Assis (rosa_assis@yahoo.com.br) on 2017-10-02T18:36:34Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
PRISCILA ROMAGNOLI.pdf: 5679153 bytes, checksum: 33c89deb6013a43a474ebfdd521b2f64 (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2017-10-03T14:48:20Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
PRISCILA ROMAGNOLI.pdf: 5679153 bytes, checksum: 33c89deb6013a43a474ebfdd521b2f64 (MD5) / Made available in DSpace on 2017-10-03T14:48:20Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
PRISCILA ROMAGNOLI.pdf: 5679153 bytes, checksum: 33c89deb6013a43a474ebfdd521b2f64 (MD5)
Previous issue date: 2017-05-04 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Fundação de Amparo a Pesquisa do Estado de São Paulo / Fundo Mackenzie de Pesquisa / Graphene is a two-dimensional material composed of carbon atoms arranged in a
hexagonal lattice with excellent electronic properties, such as high electron mobility,
and optical properties, such as wavelength-independent absorption due to
the zero electronic bandgap [1]. Novoselov and Geim [2] isolated graphene for
the rst time in 2004 and, since then, it has been proving applicable to several
areas. In photonics, to date, application as saturable absorbers, polarizers and
modulators, among others, have been demonstrated using the nanomaterial on
transparent dielectric substrates. This type of substrate becomes necessary for
photonic applications, since generally absorption is undesirable. With this requirement
in mind, this thesis studies graphene on transparent dielectric substrates,
with two main objectives. The rst objective is to increase the optical contrast of
graphene on transparent substrates, improving its visualization. The re
ectance of silicate glasses covered with graphene, for example, is 4.3% (normal incidence),
while the re ectance of glass without graphene is 4.0%, which generates low values
of contrast, of the order of 8%. This problem is studied and two solutions to increase the optical contrast are presented. The rst one uses re ected light at the Brewster angle of the substrate, which allows the cancellation of the substrate re ection and, thus, for the observation of re ection only in regions covered with graphene. The technique showed an increase in optical contrast of up to 380 over conventional optical microscopy. The second technique to enhance the contrast explores the unusual fact that re
ection on a glass with graphene depends on from which medium light incides (from air or glass). With normal incidence, it was observed that glass substrate incidence generates an increase in optical contrast of 1.3 in relation to air incidence. The technique can be
easily implemented in a conventional optical microscope. The second objective
of this thesis is to investigate a new method for electrically doping graphene on
glass. Doping allows adjustment of the optical and electronic characteristics of
graphene. The method consists of exploring the process of thermal poling of silicate
glasses. Poling is a known method for recording an electric eld close to the
surface in glasses. The doping by poling is investigated by the generated spectral
shifts in the Raman G band of graphene and from surface plasmon excitations.
It was noted, however, that poling generated a charge concentration in graphene
that was lower than expected, 2,9 1012cm2, which indicates that the recorded
eld is neutralized before it reaches graphene. Although the origin of such neutralization
is not yet understood, one possibility is the migration of charges from
graphene to the substrate, which would screen the electric eld in graphene. The
e ects of doping due to interaction with the atmosphere and the substrate are
also shown to be important factors that signi cantly in uence the nanomaterials
charge concentration. A signi cant reduction in these e ects is demonstrated
using a substrate of exfoliated hBN on silica and in an argon atmosphere. / O grafeno é um material bidimensional composto de átomos de carbono dispostos em uma rede hexagonal com excelentes propriedades eletrônicas, como a alta mobilidade eletrônica, e ópticas, como a absorção independente do comprimento de onda devido ao gap zero [1]. Novoselov e Geim [2] isolaram o grafeno pela primeira vez em 2004 e, desde então, o grafeno vem demonstrando aplicações nas mais diversas áreas. Na área de fotônica, até o momento, aplicacões como absorvedores saturáveis, polarizadores e moduladores, entre outras, já foram demonstradas utilizando o nanomaterial em substratos transparentes dielétricos.
Esse tipo de substrato torna-se necessário em aplicações fotônicas, uma vez que em geral sua absorção da luz pelo substrato é indesejada. Com este requerimento em vista, esta tese de doutorado estuda o grafeno sobre substratos dielétricos transparentes, com dois objetivos principais. O primeiro objetivo é aumentar o contraste óptico do grafeno sobre substratos transparentes, melhorando sua visualização. A refletância de vidros silicatos recobertos com grafeno, por exemplo,é de 4,3% (incidência normal), enquanto a refletância do vidro sem grafeno é de4,0%, o que gera valores de contraste _optico baixos, da ordem de 8%. Este problema é estudado e duas soluções para o aumento de contraste são apresentadas.
A primeira utiliza a condição de polarização por reflexão da luz em ângulo de
Brewster, que possibilita o cancelamento da reflexão do substrato e a obtenção
de reflexão somente onde há grafeno. A técnica proposta mostrou um aumento
do contraste óptico de até 380x em relação á microscopia óptica convencional.
A segunda técnica de aumento de contraste explora o fato, não muito usual, de
que a reflexão no grafeno sobre vidro depende do meio a partir do qual a luz
incide (a partir do ar ou vidro). Com incidência normal, foi observado que a
incidência pelo substrato de vidro gera um aumento no contraste óptico de 1,3x
em relação _a incidência pelo ar. A técnica pode ser facilmente implementada
em um microscópio óptico convencional. O segundo objetivo da presente tese
consiste em investigar um novo método de dopagem elétrica de grafeno sobre
vidros. A dopagem permite o ajuste das características ópticas e eletrônicas do
grafeno. O método consiste em explorar o processo de poling térmico de vidros
silicatos. O poling é um método conhecido para gravação de um campo elétrico próximo á superfície em vidros. A dopagem gerada pelo poling é investigada a partir dos deslocamentos espectrais gerados na banda G Raman do grafeno e a partir da excitação de plásmons de superfície. Observou-se, entretanto, que o poling gerava uma concentração de portadores no grafeno menor do que a esperada, de ~2,9x1012cm-2, indicando que o campo gravado é neutralizado antes de chegar ao grafeno. Apesar de não se entender ainda a origem de tal neutralização, uma possibilidade é uma migração de cargas do grafeno para o substrato, o que blindaria o campo elétrico no grafeno. Os efeitos de dopagem decorrentes de interação com o ambiente e com o substrato também são mostrados como fatores importantes que influenciam significativamente a concentração de cargas do nanomaterial.É demonstrada uma redução significativa nesses efeitos utilizando-se um substrato de hBN esfoliado sobre sílica e atmosfera de argônio.
|
43 |
Physiological demands of competitive elite cross-country skiingCarlsson, Magnus January 2015 (has links)
Introduction Researchers have, for decades, contributed to an increased collective understanding of the physiological demands in cross-country skiing; however, almost all of these studies have used either non-elite subjects and/or performances that emulate cross-country skiing. To establish the physiological demands of cross-country skiing, it is important to relate the investigated physiological variables to the competitive performance of elite skiers. The overall aim of this doctoral thesis was, therefore, to investigate the external validity of physiological test variables to determine the physiological demands in competitive elite cross-country skiing. Methods The subjects in Study I – IV were elite male (I – III) and female (III – IV) cross-country skiers. In all studies, the relationship between test variables (general and ski-specific) and competitive performances (i.e. the results from competitions or the overall ski-ranking points of the International Ski Federation (FIS) for sprint (FISsprint) and distance (FISdist) races) were analysed. Test variables reflecting the subject’s general strength, upper-body and whole-body oxygen uptake, oxygen uptake and work intensity at the lactate threshold, mean upper-body power, lean mass, and maximal double-poling speed were investigated. Results The ability to maintain a high work rate without accumulating lactate is an indicator of distance performance, independent of sex (I, IV). Independent of sex, high oxygen uptake in whole-body and upper-body exercise was important for both sprint (II, IV) and distance (I, IV) performance. The maximal double-poling speed and 60-s double-poling mean power output were indicators of sprint (IV) and distance performance (I), respectively. Lean mass was correlated with distance performance for women (III), whereas correlations were found between lean mass and sprint performance among both male and female skiers (III). Moreover, no correlations between distance performance and test variables were derived from tests of knee-extension peak torque, vertical jumps, or double poling on a ski-ergometer with 20-s and 360-s durations (I), whereas gross efficiency while treadmill roller skiing showed no correlation with either distance or sprint performance in cross-country skiing (IV). Conclusion The results in this thesis show that, depending on discipline and sex, maximal and peak oxygen uptake, work intensity at the lactate threshold, lean mass, double-poling mean power output, and double-poling maximal speed are all externally valid physiological test variables for evaluation of performance capability among elite cross-country skiers; however, to optimally indicate performance capability different test-variable expressions should be used; in general, the absolute expression appears to be a better indicator of competitive sprint performance whereas the influence of body mass should be considered when evaluating competitive distance performance capability of elite cross-country skiers.
|
44 |
THE EFFECTS OF ADDITIVE MANUFACTURING AND ELECTRIC POLING TECHNIQUES ON POLY(VINYLIDENE FLUORIDE) MATERIALS: TOWARDS FULLY THREE-DIMENSIONAL PRINTED FUNCTIONAL MATERIALSJinsheng Fan (16316757) 02 August 2023 (has links)
<p> An all-additive manufacturing technique was developed to print piezoelectrically active polymeric materials, primarily poly(vinylidene fluoride) (PVdF), for use in pressure sensors in soft robotics. The research proceeded in three stages. The initial stage used Fused Deposition Modeling (FDM) and electric poling independently to create piezoelectric PVdF pressure sensors. The second stage merged FDM and electric poling processes. The third stage introduced electrospinning to create flexible, high-output piezoelectric PVdF materials, which were combined with three-dimensional (3D) printed soft structures for stretchable pressure sensors.</p>
<p> The main achievement of the research was the development of the Electric Poling-assisted Additive Manufacturing (EPAM) technique, combining electric poling and FDM 3D printing to print piezoelectric materials with custom structures at lower costs. β-phase in semicrystalline PVdF materials is mainly responsible for piezoelectricity. A higher β-phase content results in superior sensor performance. This technique was evaluated by measuring the piezoelectric output voltage of the printed PVdF films, and β-phase content was quantified using Fourier-transform Infrared spectroscopy (FTIR). The developed EPAM technique was combined with Direct Ink Writing (DIW), becoming a hybrid 3D printing technique. This is the first demonstration of applying a hybrid printing technique to print piezoelectric PVdF-based sensors directly. The sensor was constructed using FDM printed PVdF film as the dielectric sandwiched between two parallel DIW printed silver electrodes. The PVdF sensors have both piezoelectric pressure sensing and capacitive temperature sensing functionalities. The application of the capacitive temperature sensor was demonstrated by applying heating-and-cooling cycles while measuring the capacitance as a function of temperature at a constant frequency, showing improved sensitivities at higher frequencies (i.e., 105 Hz) after dielectric polarization.</p>
<p> The third stage of research was motivated by the need for soft piezoelectric pressure sensors for soft robotics. Challenges were twofold: requiring soft piezoelectric materials with high coefficients for excellent sensors and fabrication techniques to incorporate soft materials into designed structures. Inspired by the EPAM technique, a method combining electrospinning and DIW was used to create soft piezoelectric PVdF/thermal plastic polyurethane (TPU) blend microfiber-based pressure sensors. The soft sensor was integrated with an FDM printed soft structure for a stretchable pressure sensor with both piezoelectric sensing and capacitive sensing mechanisms.</p>
|
45 |
Polarisation thermique et microstructuration planaire de propriétés optiques non linéaires du second ordre dans des matériaux vitreux : etude des verres NaPO3 – Na2B4O7 – Nb2O5 / Thermal poling and planar second order nonlinear optical properties microstructuring in glasses : study of glasses NaPO3 – Na2B4O7 – Nb2O5Delestre, Aurélien 13 December 2010 (has links)
Le développement des technologies optiques dans le domaine de la communication engendre un intérêt pour les matériaux présentant des propriétés non linéaires. Le matériau idéal doit combiner un coefficient non linéaire élevé, de bonnes propriétés optiques et un faible coût de fabrication. Les matériaux vitreux restent de bons candidats pour ce type d’application. La polarisation thermique permet de générer ce genre de propriétés dans les verres. En effet, à des températures de l’ordre de 300°C, l’application d’un champ électrique provoque la migration d’ions mobiles dans le matériau depuis l’anode vers la cathode. Une zone de déplétion en surface est ainsi créée donnant naissance à un champ électrique enterré. En combinant une technique de dépôt métallique, une irradiation laser et l’application d’un champ électrique (poling), il devient possible de réaliser des architectures complexes de migration et d’obtenir ainsi des propriétés optiques non linéaires structurées. / Optical technologies development for communication has triggered a real interest about materials with nonlinear properties. The ideal material should combine a high nonlinear coefficient, good optical properties and a low production cost. Glasses remain very good materials for this kind of applications.Thermal poling is now well known for breaking glasses natural centro-symmetry and inducing second order nonlinearities. Indeed, at temperatures close to 300°C, the application of an electric field induces mobile ions migration from the anode to the cathode.In that case, the space charge created during the poling process generates an efficient macroscopic electrostatic field trapped under the anodic surface of the glass.The combination of silver deposition, femtosecond laser irradiation and thermal poling has been successfully used to realize a complex architecture of ionic migration leading to structuring of second order nonlinear properties at the microscopic scale.
|
46 |
The importance of body-mass exponent optimization for evaluation of performance capability in cross-country skiingCarlsson, Tomas January 2015 (has links)
Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output. / <p>Incorrect ISBN in printed thesis: 973-91-7601-270-3</p>
|
47 |
[en] GLASS ELECTROTHERMAL POLING AND CHARACTERIZATION TECHNIQUES / [pt] POLARIZAÇÃO ELETROTÉRMICA DE VIDROS E TÉCNICAS DE CARACTERIZAÇÃOCAROLINE SOUSA FRANCO 09 September 2004 (has links)
[pt] É possível criar uma não-linearidade de segunda ordem em
amostras de sílica a partir do processo de polarização.
Essas amostras vítreas com o X(2) induzido potencialmente
podem ser utilizadas na fabricação de componentes como
moduladores ópticos e dobradores de freqüência. O
processo
de polarização eletrotérmica utiliza alta tensão e alta
temperatura e forma uma região de depleção de íons
(camada
de depleção) onde um campo elétrico intenso é gravado de
forma permanente dentro da amostra. Neste trabalho, foram
utilizadas diferentes técnicas de caracterização para
medir
a extensão dessa camada e os resultados foram comparados.
As técnicas escolhidas foram: Ataque Químico
Interferométrico (com ácido fluorídrico), Maker Fringe,
Microscopia Óptica e de Força Atômica e Ataque
Interferométrico com Medida de Segundo Harmônico em Tempo
Real. Além disso, foram feitos alguns estudos paralelos
visando à otimização e a reprodutibilidade do processo de
polarização. Foram realizadas dessa forma análises sobre
o
material dos eletrodos utilizados e sobre a influência da
condição inicial da superfície da amostra antes da
polarização. / [en] It is possible to create a second order non linearity in
silica samples with the poling process. The glass samples
with an induced X(2) have a potential application on the
fabrication of optical devices such as modulators and
frequency converters. In the electrothermal poling process,
high voltage and high temperature are applied to the
samples forming an ion depleted region (depletion layer),
where an intense electric field is permanently recorded. In
this work, several characterization techniques have been
utilized to measure the width of the depletion layer and
compared the obtained results. The chosen techniques were:
Interferometric Etching, Maker Fringe, Optical and Atomic
Force Microscopy and the Interferometric Etching with Real
Time Second Harmonic Measurement. In addition to this, we
performed other studies aiming the optimization and
reproducibility of the poling process. In this way, we
analyzed the material used for the electrodes and the
influence of the initial condition of the sample surface
before poling.
|
48 |
Zapojení vybraných svalů horní části těla při oboustranném bruslení jednodobém, soupažném běhu prostém a při napodobivém cvičení na běžkařském trenažeru Concept 2 / Involvement of the muscles of the upper body collected at time of cross-country skiing and during simulating exercisesHoryna, Roman January 2018 (has links)
Title: Upper body muscles activity in V2 skating technique, double poling and on a skiing machine Concept 2 Objectives: Comparison of involvement upper body muscles during V2 skating technique, double poling and on a skiing machine Concept 2. Methods: Comparative analysis: the dates were measured by surface electromyography and 2-D video-analysis. Results: We found statistically significant coordination similarity by comparisons muscle preactivation and activation during V2 skating technique and double poling. Trunk flexors musculus obliquus abdominis externus and musculus rectus abdominis showed unlike the main propulsion muscles, musculus pectoralis major, musculus triceps brachii and musculus latissimus dorsi, significantly higher preactivation during V2 skating technique and double poling in comparison to skiing machine Concept 2. Activation of the main propulsion muscles on a skiing machine Concept 2 is significantly higher than during V2 skating technique and double poling. Skiing machine Concept 2 cannot be considered as a specific training method for cross-country skiing. Long-term application may cause disruption of double poling technique. Key words: Cross country skiing, V2 skating technique, double poling, skiing machine Concept 2 (SkiErg), kinesiology, surface electromyography
|
49 |
Periodic Poling of Lithium Niobate Thin Films for Integrated Nonlinear OpticsNagy, Jonathan Tyler 02 September 2020 (has links)
No description available.
|
50 |
Zapojení vybraných svalů horní části těla při oboustranném bruslení jednodobém, soupažném běhu prostém a při napodobivém cvičení na běžkařském trenažeru Concept 2 / Involvement of the muscles of the upper body collected at time of cross-country skiing and during simulating exercisesHoryna, Roman January 2018 (has links)
Title: Upper body muscles activity in V2 skating technique, double poling and on a skiing machine Concept 2 Objectives: Comparison of involvement upper body muscles during V2 skating technique, double poling and on a skiing machine Concept 2. Methods: Comparative analysis: the dates were measured by surface electromyography and 2-D video-analysis. Results: We found statistically significant coordination similarity by comparisons muscle preactivation and activation during V2 skating technique and double poling. Trunk flexors musculus obliquus abdominis externus and musculus rectus abdominis showed unlike the main propulsion muscles, musculus pectoralis major, musculus triceps brachii and musculus latissimus dorsi, significantly higher preactivation during V2 skating technique and double poling in comparison to skiing machine Concept 2. Activation of the main propulsion muscles on a skiing machine Concept 2 is significantly higher than during V2 skating technique and double poling. Skiing machine Concept 2 cannot be considered as a specific training method for cross-country skiing. Long-term application may cause disruption of double poling technique. Key words: Cross country skiing, V2 skating technique, double poling, skiing machine Concept 2 (SkiErg), kinesiology, surface electromyography
|
Page generated in 0.0704 seconds