51 |
Characterization and Modeling of Chemical-Mechanical Polishing for Polysilicon MicrostructuresTang, Brian D., Boning, Duane S. 01 1900 (has links)
Long the dominant method of wafer planarization in the integrated circuit (IC) industry, chemical-mechanical polishing is starting to play an important role in microelectromechnical systems (MEMS). We present an experiment to characterize a polysilicon CMP process with the specific goal of examining MEMS sized test structures. We utilize previously discussed models and examine whether the same assumptions from IC CMP can be made for MEMS CMP. We find that CMP at the MEMS scale is not just pattern density dependent, but also partly dependent on feature size. Also, we find that new layout designs relevant to MEMS can negatively impact how well existing CMP models simulate polishing, motivating the need for further model development. / Singapore-MIT Alliance (SMA)
|
52 |
Modeling Dielectric Erosion in Multi-Step Copper Chemical-Mechanical PolishingChun, Jung-Hoon, Saka, Nannaji, Noh, Kyungyoon 01 1900 (has links)
A formidable challenge in the present multi-step Cu CMP process, employed in the ultra-large-scale integration (ULSI) technology, is the control of wafer surface non-uniformity, which primarily is due to dielectric erosion and Cu dishing. In contrast with the earlier experimental and semi-theoretical investigations, a systematic way of characterizing and modeling dielectric erosion in both single- and multi-step Cu CMP processes is presented in this paper. Wafer- and die-level erosion are defined, and the plausible causes of erosion at each level are identified in terms of several geometric and physical parameters. Experimental and analytical means of determining the model parameters are also outlined. The local pressure distribution is estimated at each polishing stage based on the evolving pattern geometry and pad deformation. The single-step model is adapted for the multi-step polishing process, with multiple sets of slurry selectivities, applied pressure, and relative velocity in each step. Finally, the effect of slurry-switching point on erosion was investigated for minimizing dielectric erosion in the multi-step Cu CMP. Based on the developed multi-step erosion model, the physical significance of each model parameter on dielectric erosion is determined, and the optimal polishing practices for minimizing erosion in both multi-step and single-step polishing are suggested. / Singapore-MIT Alliance (SMA)
|
53 |
A Multi-scale Model for Copper Dishing in Chemical-Mechanical PolishingNoh, Kyungyoon, Saka, Nannaji, Chun, Jung-Hoon 01 1900 (has links)
The present success in the manufacture of multi-layer interconnects in ultra-large-scale integration is largely due to the acceptable planarization capabilities of the chemical-mechanical polishing (CMP) process. In the past decade, copper has emerged as the preferred interconnect material. The greatest challenge in Cu CMP at present is the control of wafer surface non-uniformity at various scales. As the size of a wafer has increased to 300 mm, the wafer-level non-uniformity has assumed critical importance. Moreover, the pattern geometry in each die has become quite complex due to a wide range of feature sizes and multi-level structures. Therefore, it is important to develop a non-uniformity model that integrates wafer-, die- and feature-level variations into a unified, multi-scale dielectric erosion and Cu dishing model. In this paper, a systematic way of characterizing and modeling dishing in the single-step Cu CMP process is presented. The possible causes of dishing at each scale are identified in terms of several geometric and process parameters. The feature-scale pressure calculation based on the step-height at each polishing stage is introduced. The dishing model is based on pad elastic deformation and the evolving pattern geometry, and is integrated with the wafer- and die-level variations. Experimental and analytical means of determining the model parameters are outlined and the model is validated by polishing experiments on patterned wafers. Finally, practical approaches for minimizing Cu dishing are suggested. / Singapore-MIT Alliance (SMA)
|
54 |
Optimization of the polishing procedure using a robot assisted polishing equipmentGagnolet, Marielle January 2009 (has links)
Today, manual polishing is the most common method to improve the surface finish of mould and dies for e.g. plastic injection moulding, although it is a cumbersome and time-consuming process. Therefore, automated robots are being developed in order to speed up and secure the final result of this important final process. The purpose of this thesis is to find out some clues about the influence of different parameters for the polishing of a steel grade called Mirrax ESR (Uddeholm Tooling AB) using a Design of Experiment. The report starts with a brief description of mechanical polishing (the techniques and polishing mechanisms) and ends up with the optimization of the polishing procedure with a polishing machine, the Strecon RAP-200 made by Strecon A/S. Even if all the runs of the Design of Experiments couldn’t be carried out, the surfaces studied revealed some information about the importance of the previous process (turning marks not removed) and about the link between the aspect of the surfaces and the roughness parameters.
|
55 |
A control system for integrating precision polishing system and CNC machine toolGu, Wen-yi 06 February 2010 (has links)
The main goal of this thesis is to propose a strategy which can integrate the precision hydrodynamic polishing system with an ordinary CNC machine tool. This integrated CNC machine tool is capable of applying the hydrodynamic polishing process, which is a high-precision machining method, to compensate the form error on a work surface to improve its form precision. With such a compensation capability, a low-cost CNC machine tool may play the function of precision machining as well as an expensive CNC machine tool does. It is hoped that with this function equipped in a CNC machine tool the international competition of the domestic machining industry can be enhanced.
The complete integrating scheme is composed of three parts. The first part is the hardware of polishing system, which is required to attach to the CNC machine tool. The second one is the software developed in this thesis. It includes the codes to generate the commands to control the CNC machine tool and the attached polishing system. The final one is coordinating system that is to synchronize the actions of the CNC machine tool and polishing system. It is done by requiring the polishing system to match the actions of machine tool through measuring the configuration of machine tool consistently. Because of the first and third parts, no modification to the machine tool is needed and the requirement to read the internal information of CNC controller is waved. This will significantly reduce the complexity in implementing the integrating job.
When properly integrated with the required sensors, the software developed in this thesis can harmonize the actions of the polishing system and machine tool to execute the form error compensation task. The software will automatically generate the commands for the polishing system and machine tool based on the geometric and material data of work. It does not require the user to fully comprehend the function of the CAM software and the details of polishing process. This will obviously reduce the skill requirement of operator and facilitate the use of the integrated system. Since the CNC machine tool only plays the function of offering the three translational motions (in X, Y, and Z directions), the application of this strategy to an ordinary CNC machine tool is straightforward.
|
56 |
Analysis of aggregate imaging system (AIMS) measurements and their relationship to asphalt pavement skid resistanceLuce, Anthony David 15 May 2009 (has links)
This thesis consists of two parts. The first part includes analyses of the
correlation between the results of two Aggregate Imaging System (AIMS) units. These
analyses have led to refinements of the AIMS analysis methods of angularity and
texture, which resulted in reduced variability in the results and better correlation between
the two AIMS units. The refined analysis methods were used to establish a database of
the shape characteristics of about 100 aggregate samples from the state of Texas and to
propose a new method for the classification of aggregates based on their shape
characteristics. This new method of classification is for use in the Texas Department of
Transportation (TxDOT) wet weather accident reduction program (WWARP). The use
of AIMS texture index and variability in texture within an aggregate source is proposed
instead of the British Polish Value (BPV) for classifying aggregates used in pavement
surfaces.
The second part of the thesis investigates the relationship between shape
characteristics and asphalt pavement skid resistance. Many states have implemented wet
weather accident reduction programs aimed at maintaining acceptable levels of pavement skid resistance. Proper aggregate selection before construction aids in
maintaining acceptable levels of skid resistance throughout the life of the pavement.
Several predictive models of pavement skid resistance have been developed over
the years. Some of these models account for the influence of aggregate characteristics
on pavement skid resistance, primarily through incorporating the results of the BPV test
in the model. However, the BPV test is known to have high variability and dependence
on experimental factors that are not related to the actual aggregate resistance to
polishing. AIMS offers a method to measure aggregate shape characteristics directly in
a relatively short period of time. The new method for relating aggregate shape
characteristics to pavement skid resistance was verified by relating skid resistance
measurements from field test sections to measured aggregate properties from the
laboratory. This methodology is expected to be the basis for further study to form a
more comprehensive and verified model for the prediction of pavement skid resistance
that incorporates measured aggregate properties from the AIMS system.
|
57 |
Tribo-electrochemical Characterization of Tantalum during Electrochemical-Mechanical Polishing (ECMP)Gao, Feng 2010 December 1900 (has links)
Electrochemical Mechanical Polishing (ECMP) has become increasingly important due to the continuous decrease of the device size in integrated circuit (IC) fabrication. Tantalum (Ta) is a promising material as a substitute for copper in ICs. This dissertation studies the tribology and electrochemistry of Ta ECMP.
The present research uses experimental combined analysis approaches. A specially designed experimental setup assembling a tribometer and a potentiostat was used to carry out Ta ECMP. The friction force and electrochemical reactions were measured simultaneously. Using this setup, we found the factors which affected the frictional behaviors of Ta during ECMP. The technique of single frequency electrochemical impedance spectroscopy (EIS) was employed to investigate the material removal mechanisms in Ta ECMP. The results presented the competing mechanisms of removal and formation of a surface oxide layer of Ta.
In order to further the investigation in a nanoscale, the atomic force microscope (AFM) was used to measure the material removal rate. The Preston equation for the Ta ECMP was established. A new methodology was developed to study the oxidation state and process of Ta during ECMP. Through comparing the material removal rate measured by using the AFM and the calculated one via the Faraday’s law, the distribution of the Ta suboxides and pentoxide, as well as the oxidation process, was revealed. The oxidation process was strongly dependent of the applied anodic potential, thickness of the oxide layer, mechanical forces, and surface orientation. A polymer environmental cell was designed and produced. Using this cell and AFM, it was found that the material removal in the nanometer scale was a function of the surface orientations. This research is beneficial for optimization of the Ta ECMP process.
This dissertation includes six chapters. After Introduction and Motivation and Objectives, the material, setup, and testing conditions are discussed in Chapter III. Chapter IV discusses the tribology and material removal mechanisms in Ta ECMP, while Chapter V the oxidation of Ta during ECMP, followed by Conclusions and Future Work.
|
58 |
A study on phenemona induced by nano-particle motion upon work surface¡Geffects of particle rigidity and geometryCheng, Chih-jen 19 July 2005 (has links)
The surface phenemona in polishing process induced by nano-particle was studied in this thesis. The properties of particle, rigidity and geometry, are forced. A perfect polished surface includes lower roughness and thinner damage layer. Besides a perfect surface, how we get higher rate of remove is also an important thing. The goal is to get the relation between induced surface phenomena and properities of nano-particle. The M.D. (Molecular Dynamic) simulation is uesed in this thesis. The specicaly lowered integral timestep is second for simulating the rigidity of nano-particle with saving simulation time and geting accurate in simulation results. In order to simuate the nano-particle rigidity and adhesive effects between nanoparticle and work surface, the modified potential function is used. Considering the types of nano-particle motion which are pure rolling and sliding, the different geometric shapes are used .
In the results of simulation about the rigidity of particles, the phenomena induced by rolling particles and rigidity don¡¦t have apparent correlation. For sliding particles, the lower rigidity and lower thick damage layer was. However, if the rigidity is too weak to hold the particle geometric shape, the damage layer thickness is larger. In the results of simulation about particle shapes, the sliding particle with larger front angle will indcue deeper damager layer. It¡¦s because the more workpiece atoms could move to the bottom or rear of the particles to make more damaged atoms. If the length of particle bottom be increased, the interactive behavior between particle and work surface would become more violently to make deeper damaged layer. The rolling particle with scraggy surface can cohere more atoms than the ball particle even in the lower adhesive coefficient, but induced roughness will be higher .
|
59 |
A study on suppression of wear effect for polishing tool: a rock-and-roll motion planningHsu, Sheng-po 03 August 2006 (has links)
A strategy was proposed to suppress the wear effect of tool in a
polishing process. So, machining rate of work pieces in polishing
process would keep constant. With this strategy applied to HDP, stable
machining rate will bring more advantaged for precision engineering.
This study mainly discussed by two parts. First, the planning of the
rock-and-roll motion and a wear analysis for tools is talked about.
Second is discussing about experiment further.
In first part, in order to increase tool¡¦s lifetime, expanding tool wear
region by rock-and-roll motion is adopted. Meanwhile, simulate the
wear behavior to develop a method of removing tool¡¦s materials in
expectant form. In second part, there are two targets to compare with
first part, one is the effect of planning of tool¡¦s materials removing and
the other is the improvement of suppressive wear effect for polishing tool
and stabilizing removal rate of work pieces in rock-and-roll motion.
The result of experiments shown that planning of tool¡¦s materials
removing is working, the radius of curvature and roughness of tool is
nearly stable, and there are some effects in removal rate on work pieces.
The result of experiment of rock-and-roll motion verified that the
wear theorem for tools and prove improvement of wear is working. So,
the goal of suppression of wear effect for polishing tool by expanding
tool wear region by rock-and-roll motion is feasible.
|
60 |
An experimental study on removing efficiency of surface roughness for hydrodynamic polishing processLui, Song-He 25 July 2000 (has links)
Abstract
The removing efficiency of surface roughness for the hydrodynamic polishing process under semi-contact lubricating condition was investigated in this thesis. The experimental relationships between surface roughness and polishing were first examined. From the relationships, the potential influential factors of the removing efficiency and the magnitude of surface roughness were identified. Finally, a mathematical model that was related to the removing efficiency and the magnitude of surface roughness was proposed.
Based on the experimental study, it was shown that the surface roughness would be rapidly reduced at the beginning by polishing process and then hardly improved afterward. This trend implied that surface roughness would not be completely removed during the polishing process. It was proposed that the amplitude and wavelength of surface roughness would affect the removing efficiency of surface roughness. Further, the removing efficiency was not sensitive to the tool velocity.
From the mathematical model, several points were concluded. First, the removing efficiency was positively proportional to the amplitude of surface roughness. Second, the removing efficiency was inversely to the amplitude of surface roughness. Third, the removing efficiency was inverse proportional to a waviness of tool surface. Fourth, the removing efficiency was not sensitive to tool velocity. Finally, there existed an achievable minimum surface roughness for a surface with specific wavelength. The magnitude of a minimum surface roughness was shown to be proportional to the wavelength of work surface.
|
Page generated in 0.0795 seconds