Spelling suggestions: "subject:"pollutants""
51 |
Effects of land-cover - land-use on water quality within the kuils - Eerste River CatchmentChingombe, Wisemen January 2012 (has links)
Philosophiae Doctor - PhD / The most significant human impacts on the hydrological system are due to land-use
change. The conversion of land to agricultural, mining, industrial, or residential uses
significantly alters the hydrological characteristics of the land surface and modifies
pathways and rates of water flow. If this occurs over large or critical areas of a catchment, it can have significant short and long-term impacts, on the quality of water.
While there are methods available to quantify the pollutants in surface water, methods of linking non-point source pollution to water quality at catchment scale are lacking. Therefore, the research presented in this thesis investigated modelling techniques
to estimate the effect of land-cover type on water quality. The main goal of the study was to contribute towards improving the understanding of how different landcovers
in an urbanizing catchment affect surface water quality. The aim of the research presented in this thesis was to explain how the quality of surface runoff varies on different land-cover types and to provide guidelines for minimizing water pollution
that may be occurring in the Kuils-Eerste River catchment. The research objectives
were; (1) to establish types and spatial distribution of land-cover types within the Kuils-Eerste River catchment, (2) to establish water quality characteristics of surface runoff from specific land-cover types at the experimental plot level, (3) to establish the contribution of each land-cover type to pollutant loads at the catchment scale. Land-cover characteristics and water quality were investigated using GIS and Remote Sensing tools. The application of these tools resulted in the development of a landcover
map with 36 land classifications covering the whole catchment. Land-cover in the catchment is predominantly agricultural with vineyards and grassland covering the northern section of the catchment. Vineyards occupy over 35% of the total area followed by fynbos (indigenous vegetation) (12.5 %), open hard rock area (5.8 %), riparian forest (5.2 %), mountain forest (5 %), dense scrub (4.4 %), and improved
grassland (3.6 %). The residential area covers about 14 %. Roads cover 3.4 % of the
total area. Surface runoff is responsible for the transportation of large quantities of pollutants that affect the quality of water in the Kuils-Eerste River catchment. The different land-cover types and the distribution and concentration levels of the pollutants are not uniform. Experimental work was conducted at plot scale to understand whether landcover types differed in their contributions to the concentration of water quality attributes emerging from them. Four plots each with a length of 10 m to 12 m and 5 m
width were set up. Plot I was set up on open grassland, Plot II represented the neyards,
Plot III covered the mountain forests, and Plot IV represented the fynbos landcover.
Soil samples analyzed from the experimental plots fell in the category of sandy soil (Sa) with the top layer of Plot IV (fynbos) having loamy sand (LmSa). The soil particle sizes range between fine sand (59.1 % and 78.9 %) to coarse sand (between 7 % and 22 %). The content of clay and silt was between 0.2 % and 2.4 %. Medium sand was between 10.7 % and 17.6 %. In terms of vertical distribution of the particle sizes, a general decrease with respect to the size of particles was noted from the top layer (15 cm) to the bottom layer (30 cm) for all categories of the particle sizes. There was variation in particle size with depth and location within the experimental plots. Two primary methods of collecting water samples were used; grab sampling and composite sampling. The quality of water as represented by the samples collected during storm events during the rainfall season of 2006 and 2007 was used to establish water quality characteristics for the different land-cover types. The concentration of total average suspended solids was highest in the following land-cover types, cemeteries (5.06 mg L-1), arterial roads/main roads (3.94 mg L-1), low density residential informal squatter camps (3.21 mg L-1) and medium density residential informal townships (3.21 mg L-1). Chloride concentrations were high on the following land-cover types, recreation grass/ golf course (2.61 mg L-1), open area/barren land (1.59 mg L- 1), and improved grassland/vegetation crop (1.57 mg L-1). The event mean concentration (EMC) values for NO3-N were high on commercial mercantile (6 mg L-1) and water channel (5 mg L-1). The total phosphorus concentration mean values recorded high values on improved grassland/vegetation crop (3.78 mg L-1), medium density residential informal townships (3mgL-1) and low density residential informal squatter camps (3 mg L-1). Surface runoff may also contribute soil particles into rivers during rainfall events, particularly from areas of disturbed soil, for example areas where market gardening is taking place. The study found that different land cover types contributed differently to nonpoint source pollution. GIS model was used to estimate the diffuse pollution of five pollutants (chloride, phosphorus, TSS, nitrogen and NO3-N) in response to land cover variation using water quality data. The GIS model linked land cover information to diffuse nutrient signatures in response to surface runoff using the Curve Number method and EMC data were developed. Two models (RINSPE and N-SPECT) were used to estimate nonpoint source pollution using various GIS databases. The outputs from the GIS-based model were compared with recommended water quality standards. It was found that the RINSPE model gave accurate results in cases where NPS pollution dominate the total pollutant inputs over a given land cover type. However, the N-SPECT model simulations were too uncertain in cases where there were large numbers of land cover types with diverse NPS pollution load. All land-cover types with concentration values above the recommended national water quality standard were considered as areas that needed measures to mitigate the adverse effects of nonpoint pollution.
The expansion of urban areas and agricultural land has a direct effect on land cover
types within the catchment. The land cover changes have adverse effect which has a
potential to contribute to pollution.
|
52 |
Assessment of the mass of pollutant in a soil contaminated with chlorinated solvents.Gautier, Jeanne January 2014 (has links)
The scarcity of housing has led more and more developers to turn to the conversion of former industrial areas into residential areas. Brownfield redevelopment involves the cleanup of contaminated soil to eliminate any health or environmental risk. The quantification of the amount of pollutant in soil is essential to carry out an efficient remediation. It involves sampling and analyzing the soil to determine the concentration of pollutant at a finite number of locations. It is therefore necessary to assess the pollutant amount at unknown locations to estimate the pollution for the whole site. The existing methods used by the depollution actors often lead to underestimation or overestimation of the contamination possibly creating environmental, economic and legal issues. This study aims to compare different methods to assess the mass of pollutant using data from a site contaminated with chlorinated solvents. The methods comprise currently used methods (Mean 1, Mean 2), simple interpolation methods (Thiessen Polygons, Natural Neighbor, Inverse Distance Weighting) and a method based on a complete geostatistical approach (Conditional Simulations). They are compared to determine the variability of the results obtained with a specific set of data depending on the chosen method. The deterministic methods, although easy to apply, will often underestimate the mass of pollutants contained in soil whereas the geostatistical approach can give a more realistic result, but is complex to implement.
|
53 |
EXAMINATION OF THE AMMONIA - SULFUR DIOXIDE - WATER SYSTEM USING FTIR SPECTROSCOPYSPRIGGS, LAURA S. 11 June 2002 (has links)
No description available.
|
54 |
INFLUENCE OF THE MIXTURE PREPARATION ON THE COMBUSTION IN DIRECT INJECTION ENGINESGASTALDI, PATRICK 31 March 2015 (has links)
During the last two centuries, the development of the internal combustion engine has
followed the evolution of the customer expectations. From the race for pure
performances, high power, and fun to drive, perfectly well illustrated by the fabulous
Mercedes 300 SL, the focus moved towards fuel efficient engines under the pressure
of the still increasing oil prices. The well-known Diesel powertrain, up to this period
limited to industrial vehicles, suddenly became the object of many researches, even
for automotive manufacturers, specialists for sport cars. Technologic developments,
mainly concerning turbocharging and injection, allowed the opening of the passenger
cars market to CI engines due to acceptable noise, power and still unreachable
efficiency. On the gasoline side, direct injection moved from racing to economic cars
by the introduction of the stratified combustion. More recently, the pressure rose for
dramatically reducing the air pollution, both in urban areas, by limiting NOx and soot,
but also, at the scale of the earth, for managing CO2 rejections and thereby enlarging
the efforts on efficiency.
The two first combustion systems described in this document are concerning spray
guided and air guided design alternatives to obtain a fuel stratification, and thereby
operate the gasoline engine without throttling the air intake, aiming at a better fuel
efficiency.
The first concept, called MID3S, was based on a 3 valve combustion chamber with a
large squish area and a high compression ratio over 12; inspired from the May
Fireball system, it was developed with a house made high pressure injector operating
up to 80 bars with an outwardly opening needle. An ultra-lean flame-able mixture was
formed at WOT in the vicinity of the spark plug for different operating points as low
as idle, while the maximum performances were quite close to the targeted 37 kW/l.
The efficiency was significantly improved compared to a similar MPI engine while
CO and HC were quite acceptable. On the contrary, NOx and soot would have to be
improved. The robustness of the squish aerodynamic motion was unfortunately
balanced by the sensitivity of spray angle and penetration versus the back pressure
and thereby late injection timings, creating plug wetting and fouling. The hollow cone
structure of the fuel plume was clearly responsible of this behavior, especially
because of the effect of the air entrainment inside the spray. An increase of the
injection pressure from 30 to 80 bar, and probably upper, would probably reduce this
effect. Concerning methodologies, a dedicated cylinder head was designed with two
endoscope locations in order to visualize the interaction between spray, air, walls and
combustion –or more precisely soot- with a high speed camera operating within
visible wavelengths. The spray structure, formed by a succession of ligaments at the
surface of the plume, was clearly emphasized in atmospheric conditions.
The second design, called K5M, was based on an adjustable high tumble motion
generated in the intake port. A swirl injector provided by Siemens and located
between the two intake valves of the pent roof chamber, was operated until 80 bar.
Mixture preparation was relying on the interaction between the air motion and the
spray, the tumble velocity deviating fuel droplets towards the spark plug situated at
the center of the chamber. 3D CFD simulation, PIV and LIF visualization techniques on an optical single cylinder engine were used in parallel in order to understand the
spatial evolution of the equivalence ratio during the cycle and the ability to operate
the engine at WOT, even at part load. At low BMEP and speed, the natural reduction
of the tumble intensity might have been followed by a significant reduction of the
injection pressure in order to secure an accurate balance between the two momentum
energies; unfortunately, both high cycle to cycle aerodynamic fluctuations and a poor
spray atomization at 30 bar didn’t allow to achieve an acceptable ignition stability at
low loads due to a too lean mixture in the plug vicinity. Protruded electrodes could
have been a solution to the problem but their reliable use in serial life was not
secured. On the contrary, mid load performances were globally adequate.
The third concept is concerning Diesel combustion aiming at very low NOx and soot
emissions by using an innovative injection system. The basic idea relies on the use of
a quite homogeneous combustion at low load –called Mild HCCI- and on a diffusion
controlled one at higher loads.
Based on two injections close one of the other in the vicinity of TDC, the Mild HCCI
allows to moderate the combustion noise inherent to the premixed burning phase as
the fuel injected during the second injection cools down the first combustion; the
advantages of very low NOx and soot emissions until around 8 bar BMEP are
meanwhile maintained. Above this value, the noise level becomes unacceptable for
automotive applications and the come back to a conventional diffusive combustion
becomes mandatory. Based on early academic investigations pointing out the positive
effect of small nozzle holes associated to high injection pressures in terms of soot via
a significant difference between the lift-off length and the liquid penetration length,
an innovative injection system was adapted to a conventional combustion chamber.
The first conclusion was concerning a significant improvement of the NOx/soot tradeoff
at mid and high loads with quite usual EGR rates. This advantage was due to a
much better fuel atomization linked to both small holes and high pressures.
The second conclusion was related to the possibility to achieve a “0 soot/ 0 NOx”
combustion at high loads while very much increasing EGR and air mass flows. In this
case, a Lifted Flame Diffusion Controlled combustion was generated, confirming on a
scale 1 engine the results obtained in academic conditions. Nevertheless, the use of
3D simulation allowed to demonstrate that mixture preparation was only one part of
the result; the location of the different stages of the combustion in a Kamimoto
diagram, much away from the NOx and soot peninsula, highlighted the impact of the
LTC (Low Temperature Combustion) thermodynamics. Unfortunately, despite these
good results, industrially available EGR and air systems are not able to provide the
necessary mass flows.
Concerning tools, the development steps were followed by intensive spray
visualizations for both the liquid and the vapor phases, in conditions closer and closer
to the actual engine. These measurements allowed to precisely evaluate the impact of
the diameter size, the rail pressure and the oxygen content on the difference between
lift-off and liquid lengths.
Finally, the importance of coupling investigation tools like visualization and 3D
simulation in conditions as close as possible to the actual engine in terms of
temperature, pressure and timing –eg the ability to record a complete mixture and
combustion cycle- has been emphasized for both future SI and Diesel engines. In
particular, the forecasted increase of the rail pressures will lead to re-optimize the
different available spray models and eventually to re-adapt them in terms of physical phenomena because of the great variations of the spray velocity and of the Weber
number. The presence of cavitation in the nozzle holes will also have to be taken into
account as it has a key role versus coking.
In conclusion, it is quite clear that the development of stratified gasoline and low
emissions Diesel engines will more and more rely on the mixture preparation and on
its association with low gas temperatures. / Gastaldi, P. (2015). INFLUENCE OF THE MIXTURE PREPARATION ON THE COMBUSTION IN DIRECT INJECTION ENGINES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48534
|
55 |
Acumulação de Poluentes Inorgânicos por Macrófitas Aquáticas nos Reservatórios de Santana e Vigário, Barra do Piraí-RJ / Accumulation of Pollutant Inorganic for Aquatic Macrophytes in Santana and Vigario Reservoir, Barra do Pirai-RJRosanna Strolla Valitutto 00 December 2004 (has links)
O rio Paraíba do Sul cruza três dos mais importantes estados do Brasil: Minas Gerais, São Paulo e Rio de Janeiro. Este rio é a principal fonte de água potável para mais de 11 milhões de pessoas no Rio de Janeiro e também é usado para disposição de efluentes industriais nos três estados. Além disso, recebe esgoto urbano das cidades por onde passa. Em Barra do Piraí, RJ., 40% da água do rio é bombeada para formar dois reservatórios, chamados Santana e Vigário, que são utilizados para geração elétrica. A partir daí, a água é desviada para o rio Guandú que abastece a segunda maior estação de tratamento de água do mundo. Nestes reservatórios, macrófitas aquáticas cobrem uma grande área na superfície da água, e devem ser removidas periodicamente. Estudos têm sido desenvolvidos com o objetivo de converter esta biomassa em uma fonte útil, tal como alimentação animal, fertilizante ou produção de energia. Este trabalho tem como objetivo determinar a extensão de acumulação de elementos inorgânicos em quatro macrófitas mais abundantes (Salvinia auriculata, Pistia stratiotes, Eichhornia crassipes e Eichhornia azurea ) nestes reserva-tórios. Para tal estudo, amostras de água foram coletadas em três pontos ao longo dos reserva-tórios, filtradas (0,45um), acidificadas e estocadas sob refrigeração até análise. Amostras de sólidos em suspensão foram secas a 600C, até pesos constantes e estocadas. Amostras de planta foram coletadas; lavadas com água corrente; secas no local e transportadas em pacotes de papel. No labo-ratório, essas amostras de planta foram lavadas com água destilada e secas em estufa a 600C até peso constante, moídas e acondicionadas até aná-lise. A determinação dos elementos nos três tipos de amostra foi realizada utilizando-se a espectro-metria de massa com fonte de plasma indutivamen-te acoplado (ICP-MS), ELAN 6000, Perkin-Elmer, Sciex. Em geral, todas as quatro espécies de planta acumularam os elementos estudados. No entanto, o fator de bioacumulação (FBC), o qual representa a razão entre o teor do elemento na planta e o teor deste mesmo elemento na água, é característico de cada espécie, com exceção de Ti, Cu, Zn, Rb, Sr, Se e Mo, os quais foram igualmente acumulados em todas as plantas. / Paraíba do Sul River (1,145 km long) crosses three of the most important and developed states of Brazil: Minas Gerais, São Paulo and Rio de Janeiro. It is the main water supply for more than 11 million people in Rio de Janeiro City, and it is also used extensively as a waste disposal system by industrial facilities in all three states. Moreover it receives untreated urban sewage from the cities it crosses. At the end of this very industrialised region, 40% of the river water is pumped up to form dams, named Santana and Vigário, for electrical generation. Then, the water runs down to form Guandú River, that will run to the second biggest Water Treat-ment Plant of the world. In those dams, aquatic macrophytes cover a large proportion of the sur-face area and has to be removed periodically. There has been an emphasis on converting this biomass into a useful resource, such as animal feed, fertilisers or for energy production. The aim of this work is to determine the extent of inorganic elements accumulation in the most abundant aquatic macrophytes (Salvinia auri-culata, Pistia stratiotes, Eichhornia crassipes e Eichhornia azurea) existing in those dams.
For this purpose water samples were collected in three sites along the dams, filtered (0,45m), acidified and stored in refrigerator until analysis. Suspended solids were dried to constant weight at 60oC and stored. Plant samples from different species were collected, washed with water and packed in paper bags until lab. In the laboratory, plant samples were washed several times with distilled water, dried at 60oC during 2 hs, grounded and stored until analysis. The determination of the elements was performed using ICP-MS, ELAN 6000, Perkin-Elmer, Sciex. In general, all plant species accumulates the elements studied. However, each specie has a different bioaccumulation factor (BCF), which is the ratio between the element content in the plant and the element content in the water. Exception should be made for Ti, Cu, Zn, Rb, Sr, Se and Mo, whose BCF values were similar in all species.
|
56 |
The characterization of regional ozone transportDionisio, Mariana Costa 11 October 2010 (has links)
Among the most ubiquitous and persistent air quality problems facing urban areas are high concentrations of gas phase oxidants and fine particulate matter. Ozone and particulate matter concentrations in urban areas are significantly influenced by other factors in addition to local emissions, such as regional transport spanning distances as large as 1000 kilometers. Despite the importance of regional transport in meeting air quality standards, to date most analyses of regional transport have focused only on short duration episodes, or semi-quantitative assessments. The development and evaluation of seasonal, quantitative assessments of regional pollutant transport, based on modeling calculations and observational data is the topic of this dissertation.
The observational data available through the Texas Air Quality Studies in 2000 and 2006 provide a unique opportunity to develop, evaluate, and improve methods for characterizing regional air pollutant transport. Measurements collected during these studies are used as the primary observational basis for characterizing regional ozone transport and to evaluate the performance of photochemical models. Results suggest that measurements (from aircraft and surface monitors) and the photochemical model provide consistent estimates of the magnitude of ozone transport. On this basis, photochemical modeling is used to determine potential impacts of regional ozone transport in Texas, under varying meteorological and photochemical conditions, as well as to characterize the dominant chemical and physical processes within urban plumes.
While qualitative studies and limited quantitative analyses have been performed to assess regional ozone transport, this work includes the first detailed quantitative characterization of the importance of ozone transport over the course of an entire ozone season using both photochemical modeling and ambient data. Results demonstrate that urban plumes in Texas are capable of transporting significant amounts of ozone over distances spanning hundreds of kilometers. Furthermore, on a seasonal basis, there are a number of days characterized by high contributions from inter-city transport coinciding with high total ozone concentrations, suggesting that the role of inter-city transport will remain significant for many areas to demonstrate attainment of the NAAQS for ozone. Results also indicate that reductions in the impacts of inter-city transport are possible by decreases in emissions from source regions. / text
|
57 |
Το ευρωπαϊκό μητρώο έκλυσης και μεταφοράς ρύπων (E-PRTR): μελέτη και αποτύπωση των ελληνικών επιχειρήσεων που συμμετέχουν / The European pollutant release and transfer register (E-PRTR): study and survey of participant Greek firmsΣταθούλιας, Γεώργιος 09 January 2012 (has links)
Στην παρούσα διπλωματική εργασία επιχειρείται μια προσπάθεια προσδιορισμού του ευρωπαϊκού μητρώου έκλυσης και μεταφοράς ρύπων καθώς και μια προσέγγιση προσαρμοσμένη σε δεδομένα της ελληνικής πραγματικότητας. Δηλαδή σε δεδομένα που αφορούν ελληνικές επιχειρήσεις που συμμετέχουν στο συγκεκριμένο μητρώο. / --
|
58 |
Evaluation of vegetated filter strips for attenuation of pollutants resulting from military activitiesSatchithanantham, Sanjayan January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Stacy L. Hutchinson / A field study was conducted at Fort Riley, Kansas from late spring to early winter of 2007 to investigate the ability of vegetated filter strips (VFS) to attenuate pollutants resulting from military activities, the impact of different management practices (i.e. burning and mowing) on VFS performance, and the effects of vegetation on hydrological components of VFS, especially infiltration and runoff. Two native tallgrass VFS sites, each comprising three plots, located in the military training area of Fort Riley were used for this study. Fifteen rainfall events were simulated on each site along with overland application of water containing nitrogen (N), phosphorous (P) and sediment. At the end of the season both VFS were managed by mowing or burning and a final rainfall simulation was done.
Variables including rainfall, infiltration, runon, runoff, above ground biomass density, pollutant concentrations of runon and runoff, and soil moisture were measured and used in the data analysis. Hydrograph development, water balance, and mass balance calculations were carried out in order to calculate the pollutant trapping efficiencies (PTE) of the VFS. Statistical analysis was done by fitting several regression models. Mean comparisons were also done for variables and variance was decomposed into time, plot and site effects at an alpha = 0.05.
Results showed that on average the VFS attenuated 84 % of total nitrogen, 24 % of total phosphorous and 95 % of sediments. Regression models showed that infiltration percentage and biomass density have a positive correlation with PTE. Runoff volume and PTE were negatively correlated. Soil moisture was negatively correlated with infiltration and time to runoff. With increasing biomass density, percentage of water infiltrating and time of concentration increased. Management practices, especially burning, tended to reduce PTE. Also, both management practices reduced infiltration percentage and time of concentration. PTE reduced with intensifying rainfall and increased when rainfall faded off. Phosphorous was the most sensitive pollutant for intense storm conditions followed by nitrogen, while sediment was comparatively insensitive.
|
59 |
Interactions between downslope flows and a developing cold-air poolBurns, Paul January 2015 (has links)
Downslope flows and regions of enhanced cooling have important impacts on society and the environment. Parameterisation of these often subgrid-scale phenomena in numerical models requires a sound understanding of the underlying physical processes, which has been the overarching aim of this work. A numerical model has been used to characterise the development of a region of enhanced cooling in an idealised alpine valley with width and depth of order 10 and 1 km, respectively, under stable, decoupled, poorly-drained conditions. A focus of this work has been to remove the uncertainty surrounding the forcing mechanisms behind the development of regions of enhanced cooling. The average valley-atmosphere cooling has been found to be almost equally partitioned between radiative and dynamics effects. Complex interactions between the downslope flows and the region of enhanced cooling have been quantified for the first time. For example, relatively large variations in the downslope flows are generally restricted to the region of enhanced cooling and cannot solely be attributed to the analytical model of [McNider, 1982a]. These flow variations generally coincide with return flows above the downslope flows, where a thin region of unstable air occurs, as well as coinciding with elongated downslope flow structures. The impact of these interactions on the dispersion of passive pollutants has been investigated. For example, pollutants are generally trapped within the region of enhanced cooling. The concentration of pollutants within the region of enhanced cooling, emitted over the lower half of the slopes, increase as the emission source moves away from the ground-based inversion that expands from the bottom of the valley. The concentration of pollutants within the region of enhanced cooling is very similar when varying the location of the emission source over the top half of the valley slopes. This work includes a test of the effects of varying the horizontal numerical grid resolution on average valley-atmosphere temperature changes.
|
60 |
Removal of formaldehyde from indoor air : enhancing surface-mediated reactions on activated carbonCarter, Ellison Milne 22 September 2014 (has links)
Formaldehyde is a ubiquitous and hazardous indoor air pollutant and reducing concentrations in indoor environments is a public health priority. The goals of this doctoral work were to advance analytical methods for continuous monitoring of formaldehyde at very low concentrations (sub-20 ppb[subscript v]) and to improve fundamental, mechanistic understanding of how structural and chemical properties of activated carbon influence removal of formaldehyde from indoor environments. To achieve these goals, emerging sensor-based technology was evaluated for its ability to detect and quantify ppb[subscript v]-level formaldehyde concentrations on a continuous basis at relative humidity levels characteristic of residential indoor environments. Also, a combination of spectroscopic and selective titration techniques was employed to characterize molecular-level structural and chemical properties of traditional and chemically treated granular activated carbon (GAC). In addition to selecting two different commercially available GACs for study, design and preparation of a laboratory-prepared, chemically treated GAC was pursued to create nitrogen-doped GAC with desirable surface chemical properties. Performance of all GACs was evaluated with respect to formaldehyde removal through a series of packed bed column studies. With respect to continuous formaldehyde monitoring, a method detection limit for emerging sensor technology was determined to be approximately 2 ppb[subscript v], and for relative humidity levels characteristic of indoor environments (> 40%), quantitative, continuous formaldehyde measurements less than 10 ppb[subscript v] were robust. The two commercially available GACs tested were both capable of removing formaldehyde; however, the GAC with greater density of basic surface functional groups and greater electron-donating potential (Centaur) removed twice as much formaldehyde (on a GAC mass basis) as the less basic GAC (BPL). A laboratory-prepared GAC (BPL-N) was successfully created to contain pyridinic and pyrrolic nitrogen, which was associated with increased surface density of basic functional groups, as well as with increased electron-donating potential. BPL-N exhibited better removal capacity for formaldehyde than BPL and Centaur. Furthermore, packed bed column studies of BPL-N and BPL formaldehyde removal performance yielded evidence to support the hypothesis that electron-donating potential, especially nitrogen functional groups at the BPL-N surface, promote catalytic removal of gas-phase formaldehyde via oxidation. / text
|
Page generated in 0.0608 seconds