• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles stratégies d'hydrophobation de matériaux à base d'amidon plastifié

Bélard, Laurent Averous, Luc. January 2007 (has links) (PDF)
Reproduction de : Thèse doctorat : Chimie des matériaux : Reims : 2007. / Titre provenant de l'écran titre. Bibliogr. p. 174-188.
2

Preparation of polymeric nanoparticles for topical anti-inflammatory applications / Préparation de nanoparticules à base de polymère pour applications anti-inflammatoires topiques

Badri, Waisudin 19 June 2018 (has links)
L'objectif de cette thèse est d’encapsuler l'indométacine dans des nanoparticules polymériques en association à l’huile essentielle de Nigella Sativa L. extraite à partir de ses graines afin d’optimiser son utilisation par voie cutanée et potentialiser son activité anti-inflammatoire.Pour ce faire, des nanoparticules à base de poly-epsilon-caprolactone ont été préparées par nanoprécipitation. Une étude systématique a été menée pour comprendre l'effet de la variation des paramètres de préparation sur les propriétés colloïdales des nanoparticules obtenues. Une fois les différents paramètres optimisés, l'indométacine et l'huile essentielle de Nigella Sativa L. ont été encapsulées séparément dans les nanoparticules polymériques. Puis, l’ensemble, indométacine et huile essentielle de Nigella Sativa L. a été encapsulé. Les nanoparticules préparées ont à chaque fois été caractérisées notamment en termes de stabilité et de performance d’encapsulation. Ensuite, nous avons mené une étude ex vivo et in vivo des nanoparticules obtenues afin d’évaluer le potentiel de pénétration cutanée d’une part, et le potentiel clinique dans la prise en charge de l’inflammation / The objective of this PhD thesis was to extract the Nigella Sativa L. Seeds Essential Oil and its encapsulation together with indomethacin within polymeric nanoparticles in order to reduce taken amount and to enhance indomethacin cutaneous penetration, and anti-inflammatory activity. To this direction poly-epsilon-caprolactone based nanoparticles were designed using nanoprecipitation method. A systematic study was performed to figure out the effect of process and formulation parameters on the characteristics of obtained nanoparticles. Once the effects of all parameters were studied, then indomethacin and Nigella Sativa L. Seeds Essential Oil was encapsulated separately. Consequently, both together indomethacin and Nigella Sativa L. Seeds Essential Oil was encapsulated. Then prepared nanoparticles were characterized in terms of stability, encapsulation efficiency. In addition, ex vivo skin penetration and in vivo anti-inflammatory activity of designed nanoparticles was investigated
3

Bioactive Cellulose Nanocrystal Reinforced 3D Printable Poly(epsilon-caprolactone) Nanocomposite for Bone Tissue Engineering

Hong, Jung Ki 07 May 2015 (has links)
Polymeric bone scaffolds are a promising tissue engineering approach for the repair of critical-size bone defects. Porous three-dimensional (3D) scaffolds play an essential role as templates to guide new tissue formation. However, there are critical challenges arising from the poor mechanical properties and low bioactivity of bioresorbable polymers, such as poly(epsilon-caprolactone) (PCL) in bone tissue engineering applications. This research investigates the potential use of cellulose nanocrystals (CNCs) as multi-functional additives that enhance the mechanical properties and increase the biomineralization rate of PCL. To this end, an in vitro biomineralization study of both sulfuric acid hydrolyzed-CNCs (SH-CNCs) and surface oxidized-CNCs (SO-CNCs) has been performed in simulated body fluid in order to evaluate the bioactivity of the surface functional groups, sulfate and carboxyl groups, respectively. PCL nanocomposites were prepared with different SO-CNC contents and the chemical/physical properties of the nanocomposites were analyzed. 3D porous scaffolds with fully interconnected pores and well-controlled pore sizes were fabricated from the PCL nanocomposites with a 3D printer. The mechanical stability of the scaffolds were studied using creep test under dry and submersion conditions. Lastly, the biocompatibility of CNCs and 3D printed porous scaffolds were assessed in vitro. The carboxyl groups on the surface of SO-CNCs provided a significantly improved calcium ion binding ability which could play an important role in the biomineralization (bioactivity) by induction of mineral formation for bone tissue engineering applications. In addition, the mechanical properties of porous PCL nanocomposite scaffolds were pronouncedly reinforced by incorporation of SO-CNCs. Both the compressive modulus and creep resistance of the PCL scaffolds were enhanced either in dry or in submersion conditions at 37 degrees Celsius. Lastly, the biocompatibility study demonstrated that both the CNCs and material fabrication processes (e.g., PCL nanocomposites and 3D printing) were not toxic to the preosteoblasts (MC3T3 cells). Also, the SO-CNCs showed a positive effect on biomineralization of PCL scaffolds (i.e., accelerated calcium or mineral deposits on the surface of the scaffolds) during in vitro study. Overall, the SO-CNCs could play a critical role in the development of scaffold materials as a potential candidate for reinforcing nanofillers in bone tissue engineering applications. / Ph. D.
4

Surface Characterization of Poly (epsilon-caprolactone) at the Air/Water Interface

Li, Bingbing 28 September 2004 (has links)
Surface behavior of poly (epsilon-caprolactone) (PCL) have been studied at the air/water interface (A/W). PCL is a hydrophobic and crystalline polyester with a glass transition temperature around -60 degrees centigrade, a melting point around 55 degrees centigrade, excellent biocompatibility, and low toxicity. In the past decade, PCL based systems have attracted considerable interest for controlled-release drug delivery and as scaffolds for tissue engineering, that require a fundamental understanding of PCL's degradation mechanisms and crystallization properties. PCL spherulites were commonly observed in previous bulk studies. This thesis focuses on PCL crystallization in Langmuir monolayers. Brewster angle microscopy (BAM) studies show that square, distorted rectangular, and dendritic crystals form at the A/W interface. While dendritic structures have been observed in poly (ethylene oxide) (PEO) thin film on solid substrates, this study of PCL is the first time that dendritic morphologies have been observed at the A/W interface for a linear flexible-coil polymer. As far as we know, the crystallization of flexible-coil polymers at the A/W interface is a brand new area of research. These findings may provide an interesting model system for studying crystallization in confined geometries and the effect of crystallinity on enzyme catalyzed hydrolysis of this important biodegradable polymer at the A/W interface. The main objectives of this thesis were to investigate the phase behavior of PCL at the A/W interface, gain a deeper understanding of the nucleation and growth mechanism of PCL crystallization at the A/W interface through surface pressure-area isotherms and isobaric area relaxation analyses, and interpret the effects of molecular weight on the nucleation and growth mechanism, and morphologies of semicrystalline PCL crystallized in Langmuir monolayers at the A/W interface. / Master of Science
5

Aplicação do poli(ε-caprolactona) com estrutura estrelada para obtenção de microesferas biorreabsorvíveis / Aplication of star-shaped poly(epsilon-caprolactone) to prepare bioreabsorbable microspheres

Cunha, Tatiana Franco da 25 May 2012 (has links)
O poli(ε-caprolactona) (PCL) é um polímero biocompatível e biodegradável, aprovado pelo Food and Drug Administration (FDA) para ser usado como biomaterial. Diversos estudos utilizando sua forma linear ou ramificada têm demonstrado resultados promissores para seu uso no desenvolvimento de dispositivos médicos e em aplicações na área farmacêutica. O objetivo deste trabalho foi utilizar o PCL com estrutura estrelada (PCLE) para obter microesferas biorreabsorvíveis. Primeiramente realizou-se a avaliação das propriedades físico-químicas do PCLE por meio da cromatografia de permeação em gel (GPC), ressonância magnética de prótons (1H-RMN) e carbono (13C-RMN), calorimetria exploratória diferencial (DSC) e espectrometria por infravermelho com transformada de Fourier (FT-IR). A avaliação toxicológica do PCLE foi obtida por meio do ensaio de citotoxicidade utilizando células CHO-K1 e o corante vital 5-(3-carboximethoxifenil)-2-(4,5-dimetiltiazolil)-3-(4-sulfofenil) tetrazolium e do acoplador de elétrons fenazine metilssulfato (MTS/PMS). O ensaio de biodegradação foi conduzido em pH 7,4 na presença de lipase a 37 ºC. Após essas análises o PCLE foi utilizado para preparação de esferas por meio de emulsão complexa A/O/A. O PCLE foi caracterizado como um polímero de baixa massa molar, com dispersão de tamanho unimodal e cerca de 68,8 % de suas moléculas apresentaram estrutura estrelada com três braços. Em relação às propriedades térmicas o PCLE apresentou temperatura de fusão de 57,3 ºC e temperatura de transição vítrea de -54,3 ºC. A avaliação da citotoxicidade mostrou que o extrato de PCLE é compatível com o metabolismo celular. As microesferas obtidas a partir do PCLE, por emulsão A/O/A apresentaram polidispersão de tamanho. / The poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable polymer which has been approved by Food and Drug Administration (FDA). Many studies that are using its linear or branched form have showed promising results for medical devices and controlled drug delivery applications. The aim of this research was the use of star-shaped PCL (PCLE) to prepare bioreabsorbable microspheres. At first, the physical-chemical properties were characterized by Gel Permeation Chromatography (GPC), Protons Resonance Magnetic Nuclear (1H-RMN), Carbon Resonance Magnetic Nuclear (13C-RMN), Differential Scanning Calorimetry (DSC) and Fourier Transformed Infrared Spectroscopy (FT-IR). The toxicological property was investigated by colorimetric assay using CHO-K1 cells and the vital dye (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) and the electron acceptor phenazine methosulfate (PMS). The biodegradation behavior was evaluated in the presence of lipase at 37 ºC and pH 7.4. The microspheres were prepared by complex emulsion W/O/W. The PCLE was characterized as low molecular weight polymer with monomodal distribution and about 68,8 % of the molecules were three-arm branched. The melting and glass transition temperatures were 57.3 ºC and -54.3 ºC, respectively. The cytotoxicity evaluation showed that PCLE extract was cell compatible. The obtained microspheres showed diameter polydispersity.
6

Aplicação do poli(ε-caprolactona) com estrutura estrelada para obtenção de microesferas biorreabsorvíveis / Aplication of star-shaped poly(epsilon-caprolactone) to prepare bioreabsorbable microspheres

Tatiana Franco da Cunha 25 May 2012 (has links)
O poli(ε-caprolactona) (PCL) é um polímero biocompatível e biodegradável, aprovado pelo Food and Drug Administration (FDA) para ser usado como biomaterial. Diversos estudos utilizando sua forma linear ou ramificada têm demonstrado resultados promissores para seu uso no desenvolvimento de dispositivos médicos e em aplicações na área farmacêutica. O objetivo deste trabalho foi utilizar o PCL com estrutura estrelada (PCLE) para obter microesferas biorreabsorvíveis. Primeiramente realizou-se a avaliação das propriedades físico-químicas do PCLE por meio da cromatografia de permeação em gel (GPC), ressonância magnética de prótons (1H-RMN) e carbono (13C-RMN), calorimetria exploratória diferencial (DSC) e espectrometria por infravermelho com transformada de Fourier (FT-IR). A avaliação toxicológica do PCLE foi obtida por meio do ensaio de citotoxicidade utilizando células CHO-K1 e o corante vital 5-(3-carboximethoxifenil)-2-(4,5-dimetiltiazolil)-3-(4-sulfofenil) tetrazolium e do acoplador de elétrons fenazine metilssulfato (MTS/PMS). O ensaio de biodegradação foi conduzido em pH 7,4 na presença de lipase a 37 ºC. Após essas análises o PCLE foi utilizado para preparação de esferas por meio de emulsão complexa A/O/A. O PCLE foi caracterizado como um polímero de baixa massa molar, com dispersão de tamanho unimodal e cerca de 68,8 % de suas moléculas apresentaram estrutura estrelada com três braços. Em relação às propriedades térmicas o PCLE apresentou temperatura de fusão de 57,3 ºC e temperatura de transição vítrea de -54,3 ºC. A avaliação da citotoxicidade mostrou que o extrato de PCLE é compatível com o metabolismo celular. As microesferas obtidas a partir do PCLE, por emulsão A/O/A apresentaram polidispersão de tamanho. / The poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable polymer which has been approved by Food and Drug Administration (FDA). Many studies that are using its linear or branched form have showed promising results for medical devices and controlled drug delivery applications. The aim of this research was the use of star-shaped PCL (PCLE) to prepare bioreabsorbable microspheres. At first, the physical-chemical properties were characterized by Gel Permeation Chromatography (GPC), Protons Resonance Magnetic Nuclear (1H-RMN), Carbon Resonance Magnetic Nuclear (13C-RMN), Differential Scanning Calorimetry (DSC) and Fourier Transformed Infrared Spectroscopy (FT-IR). The toxicological property was investigated by colorimetric assay using CHO-K1 cells and the vital dye (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) and the electron acceptor phenazine methosulfate (PMS). The biodegradation behavior was evaluated in the presence of lipase at 37 ºC and pH 7.4. The microspheres were prepared by complex emulsion W/O/W. The PCLE was characterized as low molecular weight polymer with monomodal distribution and about 68,8 % of the molecules were three-arm branched. The melting and glass transition temperatures were 57.3 ºC and -54.3 ºC, respectively. The cytotoxicity evaluation showed that PCLE extract was cell compatible. The obtained microspheres showed diameter polydispersity.
7

Élaboration de nanoparticules contenant l’alendronate de sodium pour une application en ostéoporose / Elaboration of nanoparticles loaded with alendronate sodium for osteoporosis treatment

Miladi, Karim 27 November 2015 (has links)
L'ostéoporose est la maladie métabolique la plus fréquente qui touche l'os. Plusieurs substances actives sont utilisées pour le traitement pharmacologique de cette maladie. Cependant, ce sont les bisphosphonates et surtout l'alendronate de sodium, qui sont prescrits en première intention. L'alendronate de sodium est, en effet, très efficace mais présente une faible absorption quand il est administré par la voie orale. Sa solubilité dans l'eau est de 20 mg/ml. Il présente en outre une faible biodisponibilité (de 0,6 à 0,7%). Cette substance active est aussi à l'origine d'effets indésirables d'irritation au niveau de l'oesophage, l'estomac et l'intestin. Ces effets sont dus à un contact local des cristaux de la substance active avec la muqueuse. L'approche d'encapsulation des substances actives dans des particules polymériques a permis d'obtenir plusieurs bénéfices thérapeutiques comme l'amélioration de la biodisponibilité et la diminution des effets indésirables. Dans la première partie de notre étude, on a réalisé l'encapsulation de l'alendronate dans des nanoparticules à base de poly-epsilon-caprolactone en utilisant la nanoprécipitation et l'émulsion double. Les nanoparticules obtenues ont une forme sphérique et une taille comprise entre 200 et 450 nm. Le meilleur pourcentage d'encapsulation a été de 34% et il a été obtenu avec la technique d'émulsion double. Ceci confirme que cette méthode est plus adaptée à l'encapsulation des molécules hydrophiles. Le profil de libération in vitro a montré deux phases : une première phase de libération relativement rapide et une deuxième phase beaucoup plus lente. L'analyse par modélisation mathématique a montré que la libération in vitro de l'alendronate se fait par diffusion et relâchement des chaines polymériques / Osteoporosis is the most frequent metabolic disease that affects bone. Many actives have been used as pharmacological treatment of this disease. However, bisphosphonates, especially, alendronate sodium, are indicated as first line regimen. Alendronate is highly efficient but presents low absorption after oral administration. Its solubility in water is 20 mg/ml. It has also poor bioavailability (0.6-0.7%). In addition, this active could lead to many side effects, which are mainly related to the esophagus, the stomach and the intestine. Such effects are linked to a local contact of drug crystals with the mucosa. Encapsulation of active molecules allowed the obtaining of many advantages over conventional pharmaceutical forms such as, bioavailability and tolerance enhancement. In the first part of our study, we managed to encapsulate alendronate sodium in poly-epsilon-caprolactone nanoparticles via two techniques: nanoprecipitation and double emulsion. Obtained nanoparticles presented a spherical form. Their size ranged between 200 and 450 nm. The highest encapsulation efficiency value was 34% and was obtained via double emulsion technique. This confirms that double emulsion is more suitable for hydrophilic drugs encapsulation. In vitro release profile showed two phases: first phase of burst release and a second more prolonged phase. Mathematical modeling showed that alendronate in vitro release occurs by drug diffusion and polymer chain relaxation. In the second experimental part, we managed to find a more interesting alternative. In fact, we opted for the use of chitosan which is a natural hydrophilic polymer. One of the obtained advantages is the avoidance of organic solvents use. In addition, this approach allowed the enhancement of encapsulation efficiency as this value increased to 70%. The used technique is ionic gelation. It is a simple encapsulation technique that is based on the transformation of a dissolved polymer to a gel-like state

Page generated in 0.0901 seconds