• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 9
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 74
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Engineered Surfaces for Biomaterials and Tissue Engineering

Peter George Unknown Date (has links)
The interaction of materials with biological systems is of critical importance to a vast number of applications from medical implants, tissue engineering scaffolds, blood-contacting devices, cell-culture products, as well as many other products in industries as diverse as agriculture. This thesis describes a method for the modification of biomaterial surfaces and the generation of tissue engineering scaffolds that utilises the self assembly of poly (styrene)-block-poly (ethylene oxide) (PS-PEO) block copolymers. Block copolymers consist of alternating segments of two or more chemically distinct polymers. The salient feature of these materials is their ability to self organise into a wide range of micro-phase separated structures generating patterned surfaces that have domain sizes in the order of 10-100nm. Further, it is also possible to specifically functionalise only one segment of the block copolymer, providing a means to precisely locate specific biological signals within the 10-100nm domains of a nano-patterned surface, formed via the programmed micro-phase separation of the block copolymer system. The density and spatial location of signalling molecules can be controlled by altering several variables, such as block length, block asymmetry, as well as processing parameters, providing the potential to authentically emulate the cellular micro to nano-environment and thus greatly improving on existing biomaterial and tissue engineering technologies. This thesis achieved several aims as outlined below; Developed methods to control the self-assembly of PS-PEO block copolymers and generate nano-patterned surfaces and scaffolds with utility for biomaterials applications. PS-PEO diblock copolymers were blended with polystyrene (PS) homopolymer and spin cast, resulting in the rapid self-assembly of vertically oriented PEO cylinders in a matrix of PS. Due to the kinetically constrained phase-separation of the system, increasing addition of homopolymer is shown to reduce the diameter of the PEO domains. This outcome provides a simple method that requires the adjustment of a single variable to tune the size of vertically oriented PEO domains between 10-100nm. Polymeric scaffolds for tissue engineering were manufactured via a method that combines macro-scale temperature induced phase separation with micro-phase separation of block copolymers. The phase behaviour of these polymer-solvent systems is described, and potential mechanisms leading to this spectacular structure formation are presented. The result is highly porous scaffolds with surfaces comprised of nano-scale self-assembled block copolymer domains, representing a significant advance in currently available technologies. Characterised the properties of these unique nano-structured materials as well as their interaction with proteinaceous fluids and cells. Nano-patterned PS-PEO self-assembled surfaces showed a significant reduction in protein adsorption compared to control PS surfaces. The adhesion of NIH 3T3 fibroblast cells was shown to be significantly affected by the surface coverage of PEO nano-domains formed by copolymer self-assembly. These nano-islands, when presented at high number density (almost 1000 domains per square micron), were shown to completely prevent cellular attachment, even though small amounts of protein were able to bind to the surface. In order to understand the mechanism by which these surfaces resisted protein and cellular adsorption we utilised neutron reflection to study their solvation and swelling properties. The results indicate that the PEO domains are highly solvated in water; however, the PEO chains do not extend into the solvent but remain in their isolated domains. The data supports growing evidence that the key mechanism by which PEO prevents protein adsorption is the blocking of protein adsorption sites. Control the nano-scale presentation of cellular adhesion and other biological molecules via the self-assembly of functionalised PS-PEO block copolymers Precise control over the nano-scale presentation of adhesion molecules and other biological factors represents a new frontier for biomaterials science. Recently, the control of integrin spacing and cellular shape has been shown to affect fundamental biological processes, including differentiation and apoptosis. We present the self-assembly of maleimide functionalised PS-PEO copolymers as a simple, yet highly precise method for controlling the position of cellular adhesion molecules. By controlling the phase separation of the functional PS-PEO block copolymer we alter the nano-scale (on PEO islands of 8-14 nm in size) presentation of the adhesion peptide, GRGDS, decreasing lateral spacing from 62 nm to 44 nm and increasing the number density from ~ 450 to ~ 900 islands per um2. The results indicate that the spreading of NIH-3T3 fibroblasts increases as the spacing between islands of RGD binding peptides decreases. Further, the same functional PS-PEO surfaces were utilised to immobilise poly-histidine tagged proteins and ECM fragments. The technologies developed in this thesis aim to improve on several weaknesses of existing biomaterials, in particular, directing cellular behaviour on surfaces, and within tissue engineering scaffolds, but also, on the prevention of fouling of biomaterials via non-specific protein adsorption. The application of block copolymer self-assembly for biomaterial and tissue engineering systems described in this thesis has great potential as a platform technology for the investigation of fundamental cell-surface and protein-surface interactions as well as for use in existing and emerging biomedical applications.
32

Engineered Surfaces for Biomaterials and Tissue Engineering

Peter George Unknown Date (has links)
The interaction of materials with biological systems is of critical importance to a vast number of applications from medical implants, tissue engineering scaffolds, blood-contacting devices, cell-culture products, as well as many other products in industries as diverse as agriculture. This thesis describes a method for the modification of biomaterial surfaces and the generation of tissue engineering scaffolds that utilises the self assembly of poly (styrene)-block-poly (ethylene oxide) (PS-PEO) block copolymers. Block copolymers consist of alternating segments of two or more chemically distinct polymers. The salient feature of these materials is their ability to self organise into a wide range of micro-phase separated structures generating patterned surfaces that have domain sizes in the order of 10-100nm. Further, it is also possible to specifically functionalise only one segment of the block copolymer, providing a means to precisely locate specific biological signals within the 10-100nm domains of a nano-patterned surface, formed via the programmed micro-phase separation of the block copolymer system. The density and spatial location of signalling molecules can be controlled by altering several variables, such as block length, block asymmetry, as well as processing parameters, providing the potential to authentically emulate the cellular micro to nano-environment and thus greatly improving on existing biomaterial and tissue engineering technologies. This thesis achieved several aims as outlined below; Developed methods to control the self-assembly of PS-PEO block copolymers and generate nano-patterned surfaces and scaffolds with utility for biomaterials applications. PS-PEO diblock copolymers were blended with polystyrene (PS) homopolymer and spin cast, resulting in the rapid self-assembly of vertically oriented PEO cylinders in a matrix of PS. Due to the kinetically constrained phase-separation of the system, increasing addition of homopolymer is shown to reduce the diameter of the PEO domains. This outcome provides a simple method that requires the adjustment of a single variable to tune the size of vertically oriented PEO domains between 10-100nm. Polymeric scaffolds for tissue engineering were manufactured via a method that combines macro-scale temperature induced phase separation with micro-phase separation of block copolymers. The phase behaviour of these polymer-solvent systems is described, and potential mechanisms leading to this spectacular structure formation are presented. The result is highly porous scaffolds with surfaces comprised of nano-scale self-assembled block copolymer domains, representing a significant advance in currently available technologies. Characterised the properties of these unique nano-structured materials as well as their interaction with proteinaceous fluids and cells. Nano-patterned PS-PEO self-assembled surfaces showed a significant reduction in protein adsorption compared to control PS surfaces. The adhesion of NIH 3T3 fibroblast cells was shown to be significantly affected by the surface coverage of PEO nano-domains formed by copolymer self-assembly. These nano-islands, when presented at high number density (almost 1000 domains per square micron), were shown to completely prevent cellular attachment, even though small amounts of protein were able to bind to the surface. In order to understand the mechanism by which these surfaces resisted protein and cellular adsorption we utilised neutron reflection to study their solvation and swelling properties. The results indicate that the PEO domains are highly solvated in water; however, the PEO chains do not extend into the solvent but remain in their isolated domains. The data supports growing evidence that the key mechanism by which PEO prevents protein adsorption is the blocking of protein adsorption sites. Control the nano-scale presentation of cellular adhesion and other biological molecules via the self-assembly of functionalised PS-PEO block copolymers Precise control over the nano-scale presentation of adhesion molecules and other biological factors represents a new frontier for biomaterials science. Recently, the control of integrin spacing and cellular shape has been shown to affect fundamental biological processes, including differentiation and apoptosis. We present the self-assembly of maleimide functionalised PS-PEO copolymers as a simple, yet highly precise method for controlling the position of cellular adhesion molecules. By controlling the phase separation of the functional PS-PEO block copolymer we alter the nano-scale (on PEO islands of 8-14 nm in size) presentation of the adhesion peptide, GRGDS, decreasing lateral spacing from 62 nm to 44 nm and increasing the number density from ~ 450 to ~ 900 islands per um2. The results indicate that the spreading of NIH-3T3 fibroblasts increases as the spacing between islands of RGD binding peptides decreases. Further, the same functional PS-PEO surfaces were utilised to immobilise poly-histidine tagged proteins and ECM fragments. The technologies developed in this thesis aim to improve on several weaknesses of existing biomaterials, in particular, directing cellular behaviour on surfaces, and within tissue engineering scaffolds, but also, on the prevention of fouling of biomaterials via non-specific protein adsorption. The application of block copolymer self-assembly for biomaterial and tissue engineering systems described in this thesis has great potential as a platform technology for the investigation of fundamental cell-surface and protein-surface interactions as well as for use in existing and emerging biomedical applications.
33

Síntese de macro-agentes de transferência de cadeia do tipo PEO-RAFT e sua utilização na polimerização em miniemulsão do estireno / Synthesis of macro-RAFT chain transfer agents and its use in the estirene miniemulsion polimerization

Fabio Henrique Franco 26 November 2010 (has links)
Neste trabalho, dois macro-agentes de transferência de cadeia para polimerizações via RAFT, à base de poli(óxido de etileno), isto é, PEO-CPADB e PEO-CPP, foram sintetizados via duas rotas químicas e utilizados como estabilizantes coloidais e como agentes de controle de massa molecular na polimerização em miniemulsão do estireno. Látices de poliestireno (PS), estabilizados estericamente pelos segmentos de PEO, foram obtidos utilizando 2,2\'-azobis(isobutironitrila) como iniciador e hexadecano como co-estabilizador. O consumo de monômero foi determinado via análise gravimétrica. O tamanho de partícula e a distribuição de tamanhos de partículas (PSD) foram determinados por espalhamento de luz (LS). As massas moleculares e a distribuição de massas moleculares (nwMM) dos polímeros foram determinadas por cromatografia de exclusão de tamanho (SEC). Os resultados mostraram que o diâmetro das gotas e das partículas de polímero, assim como a estabilidade coloidal dos látices são fortemente dependentes do tipo e da quantidade de agente de transferência de cadeia utilizado nas polimerizações. Deslocamentos das curvas de distribuição de massas moleculares para massas moleculares maiores, em função da conversão, indicaram que a maioria das cadeias poliméricas apresentava características de cadeias vivas. Análises de GPC também mostraram que a polimerização foi bem controlada quando uma quantidade do macro-agente RAFT PEO-CPP, igual a 4,4 x 10-3 mol.L-1 foi utilizada, o que foi indicado pelo baixos índices de polidispersão obtidos (1,05-1,42). / In this work, two poly(ethylene oxide)-based macro-RAFT agents, ie, PEO-CPADB and PEO-CPP, were synthesized via two chemical routes and used as a stabilizer and a control agent in the miniemulsion polymerization of styrene. Polystyrene (PS) latexes sterically stabilized by the PEO segments were obtained using 2,2?-azobis(isobutyronitrile) as initiator and hexadecane as co-stabilizer. Monomer consumption was monitored by gravimetric analysis. The latex particle size and the particle size distribution (PSD) were measured by light scattering (LS). Molar masses and molar mass distributions (nwMM) of the polymers were determined by size exclusion chromatography (SEC). The results showed that the droplet/particle sizes and the latexes stability are strongly dependent on the type and on the amount of macro-RAFT agent used in the polymerizations. Shifts of the SEC chromatograms toward higher molar masses with conversion indicated that the majority of the polymer chains are living chains. Size Exclusion Chromatography (SEC) analysis also showed that polymerization was well controlled when an amount of macro-RAFT PEO-RAFT agent equal to 4.4 x 10-3 mol. L-1 was used, since low polidispersity indices (1.05-1.42) was achieved.
34

PEO hot melt extrudates for controlled drug delivery / Extrudats à base d'oxyde de poly éthylène pour la libération contrôlée

Cantin, Oriane 16 December 2016 (has links)
Parmi les procédés de fabrication continue, l’extrusion par fusion à chaud est une technique dont l’intérêt dans le domaine pharmaceutique est grandissant. Ce procédé permet la formation des dispersions solides des substances actives au sein des matrices polymériques ou lipidiques. En fonction de l’excipient et de la substance active, cela peut être largement utilisé pour la conception des systèmes: (i) pour une libération immédiate, (ii) pour une libération modifiée et (iii) pour le masquage de goût. Les systèmes à libération modifiée sont des dispositifs intéressants qui permettent d’améliorer la biodisponibilité de la substance active, son efficacité ainsi que l’observance des patients. En fonction de la nature de l’excipient, différents systèmes avec des mécanismes de libération variés peuvent être produit, notamment des matrices inerte, érodable ou gonflante. Le poly éthylène oxide est un polymère semi- cristallin et hydrophile qui peut être utilisé pour la libération contrôlée. Son point de fusion compris entre 63 et 67 °C le rend adapté pour l’extrusion. Surtout, ses capacités de gonflement permettent d’administrer la substance active de façon contrôlée en fonction du poids moléculaire du poly éthylène oxide. Les objectifs de ce travail sont (i) d’étudier l’impact des paramètres critiques du procédé (température d’extrusion et vitesse des vis d’extrudeuse) sur le profil de libération de la substance active, (ii) de déterminer l’impact des paramètres de formulations (poids moléculaire du poly éthylène oxide, charge et type de la substance active) sur le profil de libération de la substance active et (iii) d’évaluer des formes galéniques solides conçues par le procédé d’extrusion à celui de la compression directe. Il a été montré que la variation de la température d’extrusion et de la vitesse des vis altérait l’apparence de l’extrudat et ainsi la distribution de la substance active au sein de l’extrudat. Il s’est avéré dans notre étude que la libération de la substance active n’était pas particulièrement affectée par ces changements de température et vitesse de vis de l’extrudeuse. De plus, cette étude a permis de fixer les paramètres pour les projets suivants: température 100 °C ; vitesse des vis 30 rpm ; longueur de la forme galénique 1 cm. Des extrudats de poly ethylène oxide contenant 10 % de théophylline et du poly éthylène oxide de 100 à 7000 kDa ont été utilisés dans ce travail. Il a été observé que lorsque le poids moléculaire du poly ethylène oxide augmente de 100 à 600 kDa, la libération en substance active diminue de façon importante alors qu’une augmentation jusqu’à 7000 kDa ne diminue que légèrement la libération. Des études du gonflement ont montré que ce phénomène corrélait aux variations de volume de la partie opaque de l’extrudat (gel non transparent et cœur solide). / Among continuous manufacturing processes, hot melt extrusion is a technique with growing interest in the pharmaceutical field. This process enables the formation of solid dispersions of many drugs within a polymeric or lipidic carrier. Hot melt extrusion can be widely used for different issues using the appropriate carrier and drug. Here are the mostly used concepts in pharmaceutical solid dosage forms: (i) immediate release, (ii) modified release and (iii) taste masking. Modified release systems have been taken into account to be very interesting devices for the improvement of drug- bioavailability, drug- efficacy as well as the patient compliance. Various systems with different release mechanisms can be manufactured, depending on the nature of the carrier (inert, erodible, and swelling matrices). Poly ethylene oxide is a semi crystalline and hydrophilic polymer which can be used to control drug delivery. The poly ethylene oxide melting point ranging from 63 to 67 °C makes it suitable for hot melt extrusion. Importantly, the swelling capacities of the hydrophilic poly ethylene oxide matrices are able to deliver drug in a time controlled manner, in respect of the poly ethylene oxide molecular weights. The purposes of this work were (i) to study the impact of critical process parameters (extrusion temperature and screw speed) on the drug release behavior, (ii) to determine the impact of formulation parameters (poly ethylene oxide molecular weight, nature of drug and drug loading) on drug release kinetics, and (iii) to evaluate solid dosage forms prepared by hot melt extrusion versus direct compression. Interestingly, the variation of the extrusion temperature and the screw speed leads to the altering of the extrudate appearance and thus the distribution of drug into the extrudate. However, this changing has not influenced the drug release remarkably. Thus, this study was useful to set the parameters for the following projects (temperature 100 °C; screw speed 30 rpm; dosage form size 1 cm). Poly ethylene oxide hot melt extrudates containing 10 % theophylline and based on 100 - 7,000 kDa poly ethylene oxide are used for this thesis. Importantly, the drug release decreased substantially with the increase of the poly ethylene oxide molecular weight from 100 to 600 kDa. However, further increasing of the molecular weights leads to only a slight decrease in the release rate. Swelling studies have shown that this phenomenon correlated with the change in volume of the opaque part of the extrudates (non-transparent gel and solid core).
35

Synthesis and Functionalization of Poly(ethylene oxide-b-ethyloxazoline) Diblock Copolymers with Phosphonate Ions

Chen, Alfred Yuen-Wei 29 October 2013 (has links)
Poly(ethylene oxide) (PEO) and poly(2-ethyl-2-oxazoline) (PEOX) are biocompatible polymers that act as hydrophilic "stealth" drug carriers. As block copolymers, the PEOX group offers a wider variety of functionalization. The goal of this project was to synthesize a poly(ethylene oxide)-b-poly(2-ethyl-2-oxazoline) (PEO-b-PEOX) block copolymer and functionalize pendent groups of PEOX with phosphonic acid. This was achieved through cationic ring opening polymerization (CROP) of 2-ethyl-2-oxazoline monomer onto PEO. These polymerizations used tosylsulfonyl chloride as initiator. Size-exclusion chromatography (SEC) was used to determine the molecular weights of the block copolymers. Two samples of 1:2 and one sample of 1:3 of PEO-to-PEOX block copolymers were made. These samples underwent partial hydrolysis of the PEOX pendent groups to form the random block copolymer, poly(ethylene oxide)-b-poly(2-ethyl-2-oxazoline)-co-poly(ethyleneimine) (PEO-b-PEOX-co-PEI). These reactions showed that there was a degree of control based on the moles of acid. Diethyl vinyl phosphonate was attached to the nitrogen of PEI units via Michael addition where the phosphorylation left <1% of PEI units unattached. The ethyl groups on the phosphonates were further hydrolyzed off phosphonate with HCl acid leaving phosphonic acid. After each step of synthesis, structures and composition were confirmed using ¹H NMR. Due to the nature of the phosphonic acid, the polymer can be utilized in the incorporation and release of cationic drugs. / Master of Science
36

Crystallization, Crystal Orientation and Morphology of Poly(Ethylene Oxide) Under One Dimensional Defect-Free Confinement on the Nanoscale

Hsiao, Ming-Siao 01 September 2009 (has links)
No description available.
37

Structural Characterization and Quantitative Analysis by Interfacing Liquid Chromatography and/or Ion Mobility Separation with Multi-Dimensional Mass Spectrometry

Solak, Nilüfer 21 May 2010 (has links)
No description available.
38

Synthesis and Characterization of Surface-Functionalized Magnetic Polylactide Nanospheres

Ragheb, Ragy Tadros 21 April 2008 (has links)
Polylactide homopolymers with pendent carboxylic acid functional groups have been designed and synthesized to be studied as magnetite nanoparticle dispersion stabilizers. Magnetic nanoparticles are of interest for a variety of biomedical applications including magnetic field-directed drug delivery and magnetic cell separations. Small magnetite nanoparticles are desirable due to their established biocompatibility and superparamagnetic (lack of magnetic hysteresis) behavior. For in-vivo applications, it is important that the magnetic material be coated with biocompatible organic materials to afford dispersion characteristics or to further modify the surfaces of the complexes with biospecific moieties. The acid-functionalized silane endgroup was utilized as the dispersant anchor to adsorb onto magnetite nanoparticle surfaces and allowed the polylactide to extend into various solvents to impart dispersion stability. The homopolymers were complexed with magnetite nanoparticles by electrostatic adsorption of the carboxylates onto the iron oxide surfaces, and these complexes were dispersible in dichloromethane. The polylactide tailblocks extended into the dichloromethane and provided steric repulsion between the magnetite-polymer complexes. The resultant magnetite-polymer complexes were further incorporated into controlled-size nanospheres. The complexes were blended with poly(ethylene oxide-b-D,L-lactide) diblock copolymers to introduce hydrophilicity on the surface of the nanospheres with tailored functionality. Self-assembly of the PEO block to the surface of the nanosphere was established by utilizing an amine terminus on the PEO to react with FITC and noting fluorescence. / Ph. D.
39

Design, Synthesis, and Characterization of Magnetite Clusters using a Multi Inlet Vortex Mixer

Mejia-Ariza, Raquel 17 November 2010 (has links)
Superparamagnetic nanoparticles have potential applications in targeted drug delivery and as magnetic resonance imaging contrast agents. Magnetite clusters are of particular interest for these applications because they provide higher magnetic flux (under a magnetic field) than individual magnetite nanoparticles, are biocompatible, and their size and compositions can be controlled. This thesis involves the controlled synthesis and characterization of clusters composed of magnetite nanoparticles stabilized with an amphiphilic block copolymer. It outlines a method to design and form well-defined and colloidally stable magnetite clusters. A Multi Inlet Vortex mixer (MIVM) was used because it is a continuous process that yields particles with relatively narrow and controlled size distributions. In the MIVM, four liquid streams collide under turbulent conditions in the mixing chamber where clusters form within milliseconds. The formation of magnetite clusters was studied in the presence of amphiphilic block copolymers containing poly (ethylene oxide) to provide steric stabilization and control of size distributions using flash nanoprecipitation. First, the mixer was tested using β-carotene as a model compound to form nanoparticles stabilized with an amphiphilic triblock copolymer poly(propylene oxide)-b-poly(ethylene oxide) (F127) at different Reynolds numbers and supersaturation values. Size analysis was done using dynamic light scattering and nanoparticle tracking analysis techniques. The cluster structure was studied using electron microscopy and magnetite compositions were measured using thermogravimetric analysis. Finally, the stability of magnetite clusters was studied over time and the effect of an applied magnetite field on the colloidal stability was investigated. / Master of Science
40

Synthesis and Characterization of Novel Polyethers and Polypeptides for Use in Biomedicine and Magnetic Resonance Imaging

Liang, Jue 24 January 2014 (has links)
Copolymers that contain terminal or pendent functional groups have great potential in the biomedical area due to their biocompatibility and tunable properties.1-3 In this research, two vinyl functional epoxides, vinyldimethylsilylpropyl glycidyl ether (VSiGE) and ethoxy vinyl glycidyl ether (EVGE), were synthesized. These heterobifunctional monomers were polymerizable via the epoxide groups and can be functionalized via thiol-ene reactions through the pendent vinyl groups. A series of amphiphilic block copolyethers based on poly(ethylene oxide) and poly(1,2-butylene oxide) that incorporate VSiGE or EVGE were synthesized and characterized. The vinyl ether and vinyl silane functional groups were functionalized after polymerization and the functional polymers formed pH-sensitive micelles in aqueous medium. The copolyethers were loaded with ritonavir yielding well-controlled nanoparticles. Poly(L-glutamic acid) is comprised of naturally occurring L-glutamic acid repeating units that are linked together with amide bonds. In this research, we have prepared magnetic block ionomer complexes based on poly(ethylene oxide)-b-poly(L-glutamic acid) copolymers. This is of interest due to the biocompatibility and biodegradable nature of the poly(L-glutamic acid) component of the backbone. Allyl- and thiol-functional poly(ethylene oxide)-b-poly(L-glutamic acid) copolymers were also synthesized and coated onto the surface of iron oxide nanoparticles. Allyl- and thiol-tipped single particles were reacted with each other to prepare magnetic clusters. Transverse relaxivities of the clusters were found to be significantly higher than that of single particles. One major problem in commercial development of therapeutic proteins is their poor transport across cellular membranes and biological barriers such as the blood-brain barrier (BBB). One solution to this problem is to modify proteins with amphiphilic block copolymers such as PEO-b-PPO-b-PEO, Pluronics®. However, it isn't possible to independently tune the two PEO block lengths with commercial Pluronics® since a difunctional PPO macroinitator is utilized to grow both PEO blocks simultaneously (HO-EOn-b-POm-b-EOn-OH). Another challenge is introducing functional group which allows post-polymerization functionalization for specific applications. In this study, a series of heterobifunctional asymmetric amino-EOn1-b-POm-b-EOn2-OH block copolymers (APs) with different molecular weights of each block were synthesized and the amino terminal group was conjugated to an antioxidant enzyme, Cu/Zn superoxide dismutase (SOD1). The conjugates were characterized and their cellular uptake was investigated. / Ph. D.

Page generated in 0.0693 seconds