• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 5
  • 3
  • 1
  • Tagged with
  • 39
  • 39
  • 39
  • 10
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Chemical and biological characterization of southern Ontario urban air particulate.

Legzdins, Arnold E. McCarry, B.E. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1996. / Source: Dissertation Abstracts International, Volume: 58-06, Section: B, page: 3006. Adviser: B. E. McCarry.
22

N-(2'-deoxyguanosine-8-YL)-N-acetyl-2-aminofluorene induced translesion synthesis events in E. Coli: role of Y-family error-prone polymerases and the DNA sequence context /

Nokhbeh, M. Reza January 1900 (has links)
Thesis (Ph. D.)--Carleton University, 2004. / Includes bibliographical references (p. 193-221). Also available in electronic format on the Internet.
23

New Developments On High-resolution Luminescence Spectroscopy And Their Application To The Direct Analysis Of Organic Pollutants

Yu, Shenjiang 01 January 2006 (has links)
Polycyclic aromatic compounds (PACs), which comprise a complex class of condensed multi-ring benzenoid compounds, are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. PACs are generally formed during incomplete combustion of pyrolisis of organic matter containing carbon and hydrogen. Because combustion of organic materials is involved in countless natural processes or human activities, PACs are omnipresent and abundant pollutants in air, soil, and water. Chemical analysis of PACs is of great environmental and toxicological importance. Many of them are highly suspect as etiological agents in human cancer. Because PACs carcinogenic properties strongly depend on molecular structure and differ significantly from isomer to isomer, it is of paramount importance to determine the most toxic isomers even if they are present at much lower concentrations than their less toxic isomers. Gas chromatography (GC), high-resolution GC, and high-performance liquid chromatography (HPLC) are the basis for standard PACs identification and determination. Many cases exist where GC, HPLC, and even HR-GC have not been capable to provide unambiguous isomer identification. The lack of reliable analytical data has lead to serious errors in environmental and toxicological studies. This dissertation deals with the development of novel instrumentation and analytical methods for the analysis of PACs in environmental samples. The developed methodology is based on two well-known high-resolution luminescence techniques, namely Shpol'skii Spectroscopy (SS) and Fluorescence Line Narrowing Spectroscopy (FLNS). Although these two techniques have long been recognized for their capability in providing direct determination of target PACs in complex environmental samples, several reasons have hampered their widespread use for the problem at hand. These include inconvenient sample freezing procedures; questions about signal reproducibility; lengthy spectral acquisition, which might cause severe sample degradation due to prolonged excitation; broadband fluorescence background that degrades quality of spectra, precision of measurements and detection limits; solvent constrains imposed by the need of optically transparent media; and, most importantly, the lack of selectivity and sensitivity for unambiguous determination of closely related PACs metabolites. This dissertation presents significant advances on all fronts. The analytical methodology is then extended to the analysis of fluoroquinolones (FQs) in aqueous samples. FQs are one of the most powerful classes of antibiotics currently used for the treatment of urinary tract infections. Their widespread use in both human and animal medicine has prompted their appearance in aquatic systems. The search for a universal method capable to face this new environmental challenge has been centered on HPLC. Depending on the FQ and its concentration level, successful determination has been accomplished with mass spectrometry, room-temperature fluorescence (RTF) or UV absorption spectrometry. Unfortunately, no single detection mode has shown the ability to detect all FQ at the concentration ratios found in environmental waters. We provide a feasible alternative based on FLNS. On the instrumentation side, we present a single instrument with the capability to collect multidimensional data formats in both the fluorescence and the phosphorescence time domains. We demonstrate the ability to perform luminescence measurements in highly scattering media by comparing the precision of measurements in optically transparent solvents (Shpol'skii solvents) to those obtained in "snow-like" matrixes and solid samples. For decades, conventional low-temperature methodology has been restricted to optically transparent media. This restriction has limited its application to organic solvents that freeze into a glass. In this dissertation, we remove this limitation with the use of cryogenic fiber-optic probes. Our final efforts deal with low-temperature absorption measurements. Recording absorption spectra via transmittance through frozen matrixes is a challenging task. The main reason is the difficulty to overcome the strong scattering light reaching the detector. This is particularly true when thick samples are necessary for recording absorption spectra of weak oscillators. In the case of strongly fluorescent compounds, additional errors in absorbance measurements arise from the emission reaching the detector, which might have comparable intensity to that of the transmitted light. We present a fundamentally different approach to low-temperature absorption measurements as the sought-for-information is the intensity of laser excitation returning from the frozen sample to the intensified-charge coupled device (ICCD). Laser excitation is collected with the aid of a cryogenic fiber optic probe. The feasibility of our approach is demonstrated with single-site and multiple-site Shpol'skii systems. 4.2K absorption spectra show excellent agreement to their literature counterparts recorded via transmittance with closed cycle cryogenators. Fluorescence quantum yields measured at room-temperature compare well to experimental data acquired in our lab via classical methodology. Similar agreement is observed between 77K fluorescence quantum yields and previously reported data acquired with classical methodology. We then extend our approach to generate original data on fluorescence quantum yields at 4.2K.
24

Atmospheric Transformation of Polycyclic Aromatic Compounds

Fernando, Sujan 09 1900 (has links)
<p> The profiles of polycyclic aromatic compounds (PAC) were compared in three separate studies involving air samples collected in urban and rural locations across Canada. In the Freelton/Pier 25 study (conducted near Hamilton, Ontario) a total of 32 NPAH were analyzed for in 12 composite air particulate samples from Freelton (a rural site) and Pier 25 (an urban site) using negative ion chemical ionization gas chromatography-mass spectrometry.</p> <p> The NPAH levels at the two sites were found to be similar except for the two samples at Pier 25. These results were consistent with the PAH levels determined previously which showed significantly increased levels at Pier 25 under the same condition when the sampling site was downwind of the urban/industrial core. NPAH may be significant contributors to mutation induction due to exposures to ambient air since the offspring of male mice from the Pier 25 site exposed to ambient air showed inherited mutation rates about 2 times greater than offspring of mice exposed at the Freelton site. NPAH are highly mutagenic and carcinogenic compounds that act via reductive metabolism and can be readily metabolized to potent reactive intermediates within all cells.</p> <p> Concentration data for a set of polycyclic aromatic compounds were obtained for samples collected during the day and night during a study in Simcoe (rural) and Toronto (urban) as well as at three sites in British Columbia as part of the Pacific 2001 study (Slocan (urban), Langley (suburban/rural) and Sumas (rural)). The conversion of these concentration data into particulate loadings data (using elemental carbon data) enabled us to perform a number of unique interpretations and analyses of the data sets. Since particulate loadings values are not affected by air dispersion it was possible to compare samples and individual PAC across a range of samples.</p> <p> Principal components analysis of the loadings data showed dramatic differences between the urban and rural sites from each study. Day-night samples at the rural sites also showed dramatic profile differences. The urban sites showed significantly less differences in profiles, consistent with lesser degree of air transformation and closer proximities to sources.</p> / Thesis / Master of Science (MSc)
25

A study of the synthesis and reactions of new polynuclear aromatic acids and related compounds

Greenwood, Edward James January 1966 (has links)
The preparation of 2-(3-chloro-l-naphthylmethyl)bromobenzene was achieved by the cross-condensation reaction of 3-chloro-l-naphthylmagnesium bromide and 2-bromobenzyl bromide, as well as by the reaction of this Grignard reagent with 2-bromobenzaldehyde, followed by reduction of the resulting carbinol with lithium aluminum hydride and aluminum chloride. It was found that 2-bromophenyl-1-(3-chloronaphthyl)carbinol thermally decomposed into the corresponding methylene compound and ketone. A study of the thermally induced reaction of the carbinol was made, and the products were quantitatively analyzed by means of gas chromatography. It was concluded that the anomalous products of the reaction of an aryl Grignard reagent with a benzaldehyde were actually p~duced by the thennal disproportionation of the resulting carbinols during the distillation step. The keto-acid, 2-(3-chloro-l-naphthylmethyl)- 2’-carboxybenzophenone was prepared by the inverseaddition of the Grignard reagent of 2-(3-chloro-l-naphthylmethyl)bromobenzene to phthalic anhydride. Cyclization of this keto-acid with an acetic and hydrobromic acid mixture gave 6-chloro-7-(2-carboxyphenyl)benz[a]anthracene. Methyl ester derivatives were prepared from both this acid and the precursor keto-acid. The cyclodehydration of either 2-(3-chloro-l-naphthylmethyl)-2'-carboxybenzophenone or 6-chloro-7-(2-carboxyphenyl)benz[a]anthracene with polyphosphoric acid gave 14-chlorodibenzo[hi,l]chrysen-9-one.· Treatment of this ketone with lithium aluminum hydride and aluminum chloride gave the reduction derivative, 14-chloro-9H-dibenzo[hi,l]chrysene. The unequivocal synthesis of dibenzo[hi,l]- chrysen-9-one was achieved by the dehalogenation of 14-chlorodibenzo[hi,l]chrysen-9-one with 10% palladiumcharcoal catalyst and hydrazine. The dehalogenated product was shown to be identical to the compound produced from the cyclodehydration of 7-(2-carboxyphenyl)benz[a]anthracene. The ketone, 2-(3-chloro-l-naphthylmethyl)benzophenone was prepared by the inverse-addition of the Grignard reagent of 2-(3-chloro-l-naphthylmethyl)- bromobenzene to benzoyl chloride. It was found that a small amount (16%) of 6-chloro-7-phenylbenz[a]-anthracene was formed during the distillation of the precursor ketone. The cyclodehydration of this ketone failed when various standard cyclizing media were employed, and the reason for this is discussed. Cyclization attempts with polyphosphoric acid or alumina gave dibenzo[a,l]pyrene as the only identifiable product. This unusual reaction obviously involves a rearrangement. A study was made and a mechanism for this reaction was postulated which is consistent with the experimental observations. The ketone, 2-(3-cyano-l-naphthylmethyl)benzophenone was prepared by the reaction of the corresponding chloro ketone with cuprous cyanide in N-methylpyrrolidone. 6-Cyano-7-phenylbenz[a]- anthracene was also produced in small quantity in this reaction as a consequence of the presence of the corresponding chloro compound in the ketone prior to reaction. Naphtho[3, 2, l-fg]naphthacen-9-one was prepared by the treatment of 6-cyano-7-phenylbenz[a]anthracene with a hydrobromic and acetic acid mixture at 180°, and also by the treatment of the precursor cyano ketone with polyphosphoric acid. The novel use of polyphosphoric acid in cyano group hydrolysis is discussed. Phenalo[2, 3, 4, 5-defg]naphthacene-4, 8-quinone was prepared by the treatment of 6-cyano-7-(2-carboxyphenyl)benz[a]anthracene with a hydrobromic and acetic acid mixture at 180°. An attempted procedure for the. preparation of this quinone involved the oxidation of 7-(2,6-dimethylphenyl)benz[a]anthracene to the corresponding diacid with aqueous sodium dichromate. Unfortunately this new method of oxidation failed in this case. The partial resolution of 7-(2-carboxyphenyl)-benz[a]anthracene was achieved with the use of brucine. Only one optically active isomer was obtained, and this was racemized by treatment with boiling ethanol. An empirical rule used to quantitatively determine the resistance of optically active biphenyls to racemization was applied to this acid, and the experimental observations were supported. During the course of this investigation, sixteen new compounds were prepared and were all properly characterized, except 6-cyano-7-(2-carboxyphenyl)- benz[a]anthracene, which did not give acceptable analytical data. The reason for this is discussed. Infrared and ultraviolet spectra of all new compounds were recorded. Infrared spectral observations were made which gave further support to the assigned structures of the isomeric compounds naphtho[3,2,l-fg]- naphthacen-9-one and dibenzo[hi,l]chrysen-9-one. / Doctor of Philosophy
26

Chemical and bioanalytical characterisation of PAH-contaminated soils : identification, availability and mixture toxicity of AhR agonists

Larsson, Maria January 2013 (has links)
Contaminated soils are a worldwide problem. Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in soil at former industrial areas, especially at old gasworks sites, gas stations and former wood impregnation facilities. Risk assessments of PAHs in contaminated soils are usually based on chemical analysis of a small number of individual PAHs, which only constitute a small part of the complex cocktail of hundreds of PAHs and other related polycyclic aromatic compounds (PACs) in the soils. Generally, the mixture composition of PAH-contaminated soils is rarely known and the mechanisms of toxicity and interactions between the pollutants are far from fully understood. The main objective of this thesis was to characterize remediated PAHcontaminated soils by use of a chemical and bioanalytical approach. Bioassay specific relative potency (REP) values for 38 PAHs and related PACs were developed in the sensitive H4IIE-luc bioassay and used in massbalance analysis of remediated PAH contaminated soils, to assess the contribution of chemically quantified compounds to the overall aryl hydrocarbon receptor (AhR)-mediated activity observed in the H4IIE-luc bioassay. Mixtures studies showed additive AhR-mediated effects of PACs, including PAHs, oxy PAHs, methylated PAHs and azaarenes, in the bioassay, which supports the use of REP values in risk assessment. The results from the chemical and bioassay analysis showed that PAH-contaminated soils contained a large fraction of AhR activating compounds whose effect could not be explained by chemical analysis of the 16 priority PAHs. Further chemical identification and biological studies are necessary to determine whether these unknown substances pose a risk to human health or the environment. Results presented in this thesis are an important step in the development of AhR-based bioassay analysis and risk assessment of complex PAH-contaminated samples. / <p>Other funders: Sparbanksstiftelsen Nya and Ångpanneföreningen</p>
27

Synthèse organique de macrocycles conjugués par réaction de Perkin / Formation of fully conjugated macrocycles by Perkin reactions

Robert, Antoine 19 December 2017 (has links)
La synthèse organique contrôlée de nanobagues de carbone est un challenge scientifique de longue date. Ces composés polycycliques aromatiques cylindriques peuvent être définis comme des sections de nanotubes de carbone plus larges qu’épaisses ; et la courbure de leur système pi pourrait leur conférer des propriétés électroniques intéressantes.Depuis quelques années, notre équipe développe une approche générale de synthèse de composés aromatiques polycycliques fonctionnalisés par des fonctions carboxyliques. Cette approche repose sur la réaction de Perkin entre des acides aryle-acétiques et des acides aryle-glyoxyliques, qui va permettre l’assemblage de ces briques élémentaires en longs précurseurs flexibles mais conjugués. Une dernière étape de cyclisation intramoléculaire, ou « graphitisation », pourra alors conjuguer complètement et donc rigidifier la molécule finale. Cette approche a permis la synthèse de plusieurs nouveaux composés aromatiques polycycliques linéaires.L’objectif de cette thèse est l’adaptation de l’approche de Perkin à la formation de nanobagues aromatiques. Un premier défi a été efficacement remporté avec l’obtention et la caractérisation complète de plusieurs macrocycles flexibles mais conjugués. Certains de ces macrocycles ont même été formés avec d’excellents rendements grâce à la mise en place d’une technique de haute dilution. Plusieurs tentatives de graphitisation ont été menées sur ces composés, impliquant différentes techniques de synthèse telles que la photochimie ou la catalyse au palladium, mais ne permirent malheureusement pas la formation des nanobagues aromatiques désirées. Néanmoins, en modifiant la structure initiale de certaines briques élémentaires nous avons pu obtenir d’autres macrocycles conjugués plus flexibles qui, après photocyclisation, ont abouti à la formation d’autres macrocycles conjugués présentant des structures rigides mais atypiques car non planes. / The controlled organic synthesis of carbon nanobelts has been scientific challenge for a long time. Such cylindrical polycyclic aromatic compounds can be defined as sections of carbon nanotubes that are larger than wide. Interesting electronic properties could result from the curvature of their pi system.These last years, our team has developed a general synthetic approach for the formation of carboxy-functionalised polycyclic aromatic compounds. This approach involves the Perkin reaction of arylacetic acids with arylglyoxylic acids, in order to form conjugated and flexible elongated precursors. The last step is an intramolecular cyclisation, or “graphitisation”, which rigidifies the precursor and yields a fully conjugated final molecule. Applying this approach, our team has synthesised several new linear polycyclic aromatic compounds.The aim of this thesis is to adapt the Perkin reaction for the formation of aromatic nanobelts. A first challenge has been solved by synthesising and fully characterising several flexible and conjugated macrocycles. Some of those macrocyclic compounds have been obtained with unexpectedly good yields using a high dilution addition technique. Graphitisations have been tried on some of those macrocycles by different synthetic methods, i.e. photochemistry and palladium catalysis, but none of them led to the formation of the desired aromatic nanobelt. However, by modifying the initial structure of some of the building blocks, we obtained more flexible conjugated macrocycles, which then reacted, by photocyclisation, to form conjugated and non-planar rigid macrocycles with atypical structures.
28

Distorted arenes by Scholl cyclizations, towards twisted carbon nanoribbons

Pradhan, Anirban 23 September 2013 (has links) (PDF)
Carbon nanoribbons are today of great interest as graphene segments with modulable electronic properties. Whilst top down techniques give giant ribbons, bottom-up organic synthesis may lead to exactly designed nanoribbons of controlled geometries. The Scholl reaction is a precious chemical tool for that purpose since it yields efficiently to the graphitization of long and flexible polyphenylene precursors.Surprisingly, twisted structures may be obtained preferentially even if less crowded isomers are also feasible. It has been shown that, against all expectation, even a strong steric hindrance has no marked effect on regioselectivity and highly twisted polycyclic aromatic hydrocarbons are sometimes preferentially formed, whereas their flat and more symmetrical isomers are only obtained in minority. Highly twisted structures such as hexabenzotriphenylene (HBTP) may then be obtained very easily from flexible polyphenylene precursors.After discovering this unexpected regioselectivity, we used it on purpose to form polyhelicenic species. Attempts to prepared hexaphenanthrotriphenylene (HPTP) were unsuccessful due to reactivity issues when synthesizing the corresponding flexible precursors. By using a new versatile strategy leading to an advanced common precursor, several C3-symmetrical flexible substrates have been synthesized and submitted to Scholl reaction. The expected [6]helicenes were not obtained and rearranged products were formed instead, but TMS-bearing HBTP could be prepared, as well as a hexabenzocoronene (HBC) which exceptionnal solubility is due to the distortion of the aromatic core under the effect of bulky tert-butyl substituents in bay regions.The easily formed [5]helicene fragment has been incorporated in the design of twisted carbon nanoribbons that would be composed of a succession of such motifs. As a test reaction, the corresponding monomer and dimer have been synthesized with an excellent yield and fully characterized. Their X-ray structures have even been determined, giving interesting information about their configuration. A more general strategy has then been developed and optimized for the systematic synthesis of longer oligomers of twisted nanoribbons. Using this technique, the trimer and tetramer have been synthesized and characterized by mass spectrometry.
29

Vers une modélisation du statut de polluants organiques de Technosols sous influences climatiques contrastées / Towards a modeling of organic pollutants fate of Technosols and under contrasted climatic influences

Dagois, Robin 17 December 2015 (has links)
Les Technosols issus de l’arrêt des activités industriels présentent des propriétés physico-chimiques très contrastées de celles de sols naturels et peuvent renfermer de fortes teneurs en polluants organiques (e.g. composés aromatiques polycycliques (CAP)). Leur abandon pendant des décennies a entrainé l’apparition d’une pédogenèse, particulièrement sous l’influence de facteurs climatiques et supposé entrainer un phénomène d’atténuation naturelle des polluants organiques bien que ces effets ne soient rarement identifiés. Nous proposons ainsi de modéliser l’évolution de la disponibilité des CAP au cours du temps et sous l’influence du facteur climatique. La première étape a été de transcrire des données climatiques atmosphériques en conditions pédoclimatiques et ce, selon les effets de la localisation à l’échelle mondiale, de scénarios de changements climatiques (GIEC), des propriétés des sols et de la profondeur. L’effet de modalités pédoclimatiques sur la disponibilité des CAP a ensuite été testée en conditions contrôlées et sur 11 terres industrielles contrastées (cokeries, usines à gaz). Les conséquences de ces variations de disponibilité des CAP sur la toxicité des sols ont ensuite été validées par un test de croissance de Zea mays L sur les terres vieillies. Les résultats ont été incrémentés dans les modélisations des pédoclimats permettant ainsi de prédire l’évolution de la disponibilité des CAP. Si les conditions climatiques actuelles participent à une diminution de la disponibilité des CAP, le phénomène inverse se produit suite à un réchauffement climatique, que nous définirons comme amplification naturelle, soulignant à nouveau les risques potentiels liés aux changements climatiques sur les sols / Technosols linked with the end of industrial activities depict contrasted properties from those of natural soils and may contain high concentration of organic pollutants (e.g. polycyclic aromatic compounds (PAC)). Their neglect led to the apparition of pedogenetic processes particularly under the influence of climate which potentially contribute to the natural attenuation phenomenon. Hence, we suggest a new method to predict the evolution of PACs’ availability over time and under the influence of climate. The first step was to build a transcription model to predict the pedoclimate evolution derived from weather datasets and under the influence of climate location, climate change scenarios (IPCC), soil properties and depth. The effect of pedoclimatic events on the evolution of PAC availability was then tested in controlled conditions and on 11 contrasted industrial soils (coking plant and gas plant). This allowed predicting the frequency and occurrence of major pedoclimatic events (e.g. freeze-thaw, wetting-drying cycles and periods of high temperature) that drive pedogenesis. The consequence of these availability variation on toxicity were then tested using a growth test of Zea mays L. on aged soils, confirming that PAC availability and soil phytotoxicity are linked. The aging results were then incremented into the pedoclimate model to predict the evolution of PAC availability over time. As the current climatic conditions lead to a decrease in PAC availability (natural attenuation), the opposite effect is observed under the warmer climate of 2100. We described this phenomenon as natural amplification which underlines the upcoming threat of climate change on soils
30

Bioaccumulation and Toxicokinetics of Polycyclic Aromatic Compounds and Metals in Giant Floater Mussels (Pyganodon grandis) Exposed to a Simulated Diluted Bitumen Spill

Séguin, Jonathan Y. 12 March 2021 (has links)
Canadian bitumen is mainly transported in a diluted form via pipeline and train, all posing a risk as they can lead to the release of diluted bitumen (dilbit) in the environment. In the summer of 2018, a collaborative large-scale field experiment was conducted at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA), a world-renowned aquatic research facility. The research objectives of the Boreal lake Oil Release Experiment by Additions to Limnocorrals (BOREAL) project were to understand the fate, behaviour, and potential toxic effects of dilbit in a freshwater Boreal lake to inform evidence-based management strategies for the transport of dilbit. A range of controlled dilbit spills was performed in seven 10 m diameter limnocorrals (~100,000 L of water) resulting in environmentally realistic dilbit:water dilutions ranging from 1:69,200 to 1:504, representing the upper half of the distribution of oil spill sizes in North America in the last decade. Additionally, two limnocorrals not treated with dilbit were studied as controls. This thesis identifies the bioaccumulating compounds derived from naturally weathered dilbit in adult giant floater mussels (Pyganodon grandis), to determine the rates at which they were accumulated and excreted. More specifically, the bioaccumulation potential and toxicokinetic parameters of polycyclic aromatic compounds (PACs) and various metals were assessed in mussels exposed ex situ for 41 days (25 days of exposure and 16 days of depuration) to water from the limnocorrals. These compounds have shown to be toxic, carcinogenic, and mutagenic to aquatic organisms. Mussels exposed to dilbit-contaminated water experienced significantly greater TPACs concentrations (0.40 – 0.90 µg L-1, n=12) compared to mussels from the Control (0.017 µg L-1, n=4). Furthermore, dilbit-contaminated water had a higher proportion of alkylated PACs compared to their parent counterpart, demonstrating petrogenic PAC profiles. We detected significantly greater TPACs concentrations in mussels exposed to dilbit-contaminated water (25.92 – 27.79 µg g-1, ww Lipid, n=9, at day 25 of the uptake phase) compared to mussels from the Control (average of 2.62 ± 1.95 µg g-1, ww Lipid; ±SD, n=17). Alkylated PACs represented 96.4 ± 1.8%, ±SD, n=12 of TPACs in mussels from dilbit-contaminated treatments at day 25 of the uptake phase, indicating the importance of conducting a more inclusive assessment of petrochemical mixtures as most studies only focus on parent PACs. From first-order one-compartment models derived from nonlinear curve fitting of the accumulation phase or sequential modelling method, uptake (0.66 – 24.65 L g-1 day-1, n=87) and depuration (0.012 – 0.37 day-1, n=87) kinetic rate constants, as well as bioconcentration factors (log values from 3.85 – 6.12 L kg-1, n=87) for the 29 PACs that bioaccumulated in mussels suggested that alkylated PACs have greater bioaccumulation potential compared to their parent PAC counterpart. Results from this study also demonstrated that giant floater mussels could be used to biomonitor PAC contamination following oil spills as PACs accumulated in mussel tissue and were still present following the 16 day depuration phase. The results of this study are the largest, most comprehensive set of toxicokinetic and bioaccumulation information of PACs (44 analytes) in freshwater mussels obtained to date. Metal contamination following the controlled dilbit spill was minimal, but mussels exposed to water contaminated with naturally weathered dilbit experienced elevated concentrations of dissolved zinc (30.26 – 38.26 µg L-1, n=12) compared to the mussels in the uncontaminated water (6.75 ± 3.31 µg L-1, n=4), surpassing the Canadian water quality guidelines for the protection of aquatic life. However, it is not clear if dilbit contamination caused elevated zinc concentrations in the water as other factors, such as limnocorral building materials and/or galvanized minnow traps used in the limnocorrals, could have contributed to zinc contamination. Nonetheless, giant floater mussels did not accumulate zinc in their tissues.

Page generated in 0.0828 seconds