Spelling suggestions: "subject:"polytechnic"" "subject:"polytechnics""
1 |
Förändring av layout och materialflöde i färdigvarulager hos AnVa Polytech AB / Change of layout and flow of material in finished goods stock at AnVa PolytechABAndersson, Marcus January 2017 (has links)
Syftet med detta arbete var att ta fram en lösning för en layoutförändring i ett färdigvarulager hos AnVa Polytech AB i Sunne. I den nya layouten skulle även en lösning för ett enordersflöde med hjälp av en rullbana tas fram. I dagsläget arbetade två anställda parallellt med två olika ordrar som skulle skickas till kund. Målet med arbetet var skapa en bättre arbetsmiljö, ett bättre flöde, minimera antalet onödiga transporter samt minska risken för störningar. Genom att genomföra ett antal aktivitetsobservationer och rita spaghettidiagram över arbetarnas rörelser under ett par veckors tid, gick det att se på vad och vart det lades mest tid för att sammanställa en order för skeppning. Aktivitetsobservationerna gav tydligt att sammanställningen av en pall samt att hämta och lämna produkter var det som tog längst tid. Spaghettidiagrammen i sin tur visade att lagerarbetarna gjorde många onödiga förflyttningar in och ur trucken när de skulle; fästa etiketter eller flaggor på ordern, banda eller plasta in ordern, skriva ut etiketter och flaggor samt paketera om en eller fylla en låda med mer produkter. Designen för rullbanan togs fram genom att diskutera med handledare hos AnVa Polytech AB för att hitta en smidig lösning som skulle minska rullbanans längd och göra arbetet smidigare. Sträckplastaren och bandningsmaskinen placerades intill varandra för att undvika en onödig transportsträcka i rullbanan. Det valdes även att använda rullbanan som mellanlager genom att förlänga startsträckan och slutet av rullbanan för att minska stressen på den som arbetade vid rullbanan. Lagrets nya layout togs fram genom ett konceptval. Under konceptvalet togs åtta olika koncept fram. Dessa koncept ställdes sedan mot varandra i en elimineringsmatris. Matrisen använde nuvarande lagerlayout som referensvärde för kriterier som behövde uppfyllas. De koncept som fick bäst resultat gick vidare till nästa steg i konceptvalet, den relativa beslutsmatrisen Den relativa beslutsmatrisen ställer de bästa koncepten mot varandra med fördjupade kriterier att uppfylla. Ett av koncepten väljs som referensvärde. Det koncept som uppnår bäst resultat genomgår sedan en mer detaljerad framställning. Resultatet av dessa metoder gav en färdigställd layout av en konfigurerad version av det valda konceptet från tidigare matriser. Layouten sparar mycket utrymme för rörelsefrihet, ger en god och säker arbetsmiljö samt ett flöde med bra flyt. Pallställen placerades för att undvika störningar i flödet med fotgängare från andra avdelningar som rör sig i lagret. Rullbanan placerades för at att underlätta kommunikation mellan de två lagerarbetarna om det skulle uppstå något missförstånd. På den färdigställda layouten togs det fram en ritning som måttsattes med viktiga mått för att enkelt se var i lagret samtliga hyllor, maskiner och banor skulle placeras. / The aim for this work has been to develop a new layout in the finished goods stock at AnVa Polytech AB in Sunne, Sweden. In this new layout the target was a single-order-flow using a roller conveyor. In the current situation there are two employees working on two different orders at the same time. The objective of the work was to create a better working environment, better flow of material, minimize the numbers of unnecessary transports and to minimize the risk of disturbance. By carrying out a number of observation of activities and drawing spaghetti charts over the workers movements during an compilation during a couple of weeks, you could see on what activity and where the workers spend the most time and see where there were most unnecessary movements. The observation of activities made clear that it was on compilation and movement the worker spend the most time. The spaghetti chart showed that the worker made a lot of small, unnecessary movements when going in and out of the forklift for different activities. Those activities were when they had to; print labels and flags to put on the compiled order, repacking or filling a box of material and wrap or string an order. The design of the roller conveyor was made through a discussion with the supervisors at AnVa Polytech AB to find a solution that would shorten the length of the conveyor and create a smooth flow of material. The two machines that would be a part of the conveyor were placed right next to each other to minimize the length and avoid unnecessary transportation. The roller conveyor was also set to work as an interim storage. It was mad longer in the beginning and in the end of the roller conveyor to ease the stress for the employee working at the conveyor. The new layout of the storage was made using a method of concept choice. The first part of the method was creating a number of concepts. The second part of the method was based of using two different matrices, one called elimination matrix and the second one relative decision matrix. In the elimination matrix the different concept was put against each other comparing criterias. The base value of each criteria was set by the current layout of the storage. The ones with the best results proceeded to the relative decision matrix. The relative decision matrix puts the best concepts from previous matrix against each other but with more in depth criteria. The one with the best result was the one being continued on. The chosen layout was a configured version of the best concept from the matrices. This layout saved lots of space on the floor to create a safe working environment, good and a good flow of material. The storage shelves were placed to create a smooth flow for the truck without being disturbed by pedestrians from other parts of the facility moving in the storage. The roller conveyor was placed to facilitate the communication between the two workers in the storage to avoid any kind misunderstanding while compiling an order. A measured drawing was created of the layout to make it easy to see were all the important parts in the storage were being placed to create the layout.
|
2 |
Successful special education practicesSexton, Corrine M. January 2007 (has links)
Thesis (Ed.D.)--University of Delaware, 2007. / Principal faculty advisor: Dennis L. Loftus, School of Education. Includes bibliographical references.
|
3 |
Optimization of Point-of-Use Water Treatment Device for Disaster ReliefHerzog, Margaret June 01 March 2011 (has links) (PDF)
Point-of-use (POU) drinking water treatment is a common method of providing drinking water in disaster relief situations when critical water infrastructure is damaged. In these cases, POU treatment devices can be used to treat local water until relief organizations set up more permanent water provision methods. One such POU technology is PŪR® Purifier of Water, a combined coagulation/flocculation and disinfection chemical treatment sachet produced by Procter & Gamble. PŪR® has been shown to treat contaminated water to meet water quality standards and guidelines set by the U.S. EPA for water purifiers and by the World Health Organization and The Sphere Project for emergency relief. However, the standard two-bucket method of use for PŪR® has two primary drawbacks: (1) the need for appurtenances that may not be readily available in disaster relief situations and (2) lack of a means to protect treated water from re-contamination post-treatment. An alternative to the two-bucket method is a waterbag system under development at the California Polytechnic State University, San Luis Obispo. The waterbag is a ten-liter plastic bladder with integrated filter that incorporates an all-in-one approach to drinking water treatment during emergencies. In previous studies, the first version of the waterbag consistently met World Health Organization and The Sphere Project emergency drinking water guidelines, but did not meet the pathogen reduction requirements of the U.S. EPA Guide Standard and Protocol for Testing Microbiological Water Purifiers.
A second (Mark II) version, with internal mixing baffles and a microfilter, was developed to overcome the inability of the first design to meet the U.S. EPA guidelines. The main purposes of the research presented herein were to (1) optimize the method of use and baffle configuration for the improved Mark II version of the waterbag, (2) determine ability of the waterbag to treat test waters with challenging initial water quality conditions, and (3) test the ability of the Mark II design and optimized method to meet the U.S. EPA Guide Standard and Protocol for Testing Microbiological Water Purifiers.
For the first and second objectives, the main metric of treatment performance was the extent of flocculation, which was characterized by the turbidity of waterbag supernatant after 30 minutes of settling. The waterbag procedure was varied in several ways. The variables tested were mixing duration, mixing motion type, and the effect of a mixing delay. Several waterbag baffle designs were tested to determine the physical configuration of the waterbag which resulted in best turbulence during mixing. In addition, experiments were performed to test the ability of the Mark II waterbag to treat waters with various initial qualities, such as high organic carbon content and elevated E. coli concentrations. The results of these experiments helped to prepare for a final test in meeting the pathogen removal requirements of the U.S. EPA Guide Standard and Protocol for Testing Microbiological Water Purifiers.
The procedure determined to be optimal for the Mark II waterbag treatment included five minutes of mixing using rapid 180° twisting motions at a moderate frequency of seventy 180°-twists per minute. The optimal baffle design was a 12.7 cm-wide internal mixing baffle with two cut circular holes for the promotion of turbulence during mixing. The desired post-treatment chlorine residual was achieved for different durations depending on initial organic carbon concentration. Optimal PŪR® dose to provide pathogen removals required by the U.S. EPA in the presence of Challenge Water conditions was two sachets per 10 L of water to be treated. The optimization of these design and operational procedures led to the ability of the Mark II waterbag to meet the pathogen, turbidity, pH, and non-microbiological constituent removals required by the U.S. EPA, The Sphere Project, and World Health Organization for emergency relief.
|
Page generated in 0.0563 seconds