1 |
Robustness of a General Class of Uncertain Polytopic Discrete-Time SystemsLin, Loh-Chin 30 August 2008 (has links)
This thesis addresses robust stability, robust H¡Û and H2 performance and design of discrete-time polytopic systems with an LFT uncertainty assumed at each vertex. A sequence of relaxed sufficient analysis results based on the HPPDL matrix approach has been extended to cope with such more general uncertainty structure. The state feedback gain matrix to achieve robust H¡Û and H2 performance can be easily computed from the derived sufficient LMIs. The larger the degree of homogeneous polynomial is, the lower H¡Û and H2 norm are achieved. Numerical examples are included to illustrate the derived results.
|
2 |
On Applications of the Projection Lemma to Analysis and Design of Continuous-Time SystemsWei, Chia-po 08 July 2004 (has links)
By exploiting the Projection Lemma, this thesis provides less conservative LMI-like conditions for mixed H2 and H_inf control of continuous-time systems than those appeared in the current literature. The same technique has been extended to problems with time-invariant polytopic uncertainties. Numerical examples are illustrated to show improvement of the proposed results. Finally, an attempt is made to apply the Projection Lemma to stability analysis and design of systems with time-varying polytopic uncertainties.
|
3 |
Application of Dirichlet Distribution for Polytopic Model EstimationKatkuri, Jaipal 05 August 2010 (has links)
The polytopic model (PM) structure is often used in the areas of automatic control and fault detection and isolation (FDI). It is an alternative to the multiple model approach which explicitly allows for interpolation among local models. This thesis proposes a novel approach to PM estimation by modeling the set of PM weights as a random vector with Dirichlet Distribution (DD). A new approximate (adaptive) PM estimator, referred to as a Quasi-Bayesian Adaptive Kalman Filter (QBAKF) is derived and implemented. The model weights and state estimation in the QBAKF is performed adaptively by a simple QB weights' estimator and a single KF on the PM with the estimated weights. Since PM estimation problem is nonlinear and non-Gaussian, a DD marginalized particle filter (DDMPF) is also developed and implemented similar to MPF. The simulation results show that the newly proposed algorithms have better estimation accuracy, design simplicity, and computational requirements for PM estimation.
|
4 |
Robust H2 and H¡Û Analysis and Design for Linear Discrete-Time Systems with Polytopic UncertaintyFang, Shiang-Wei 13 February 2012 (has links)
The thesis considers the problems of designing a dynamic output feedback controller to discrete time systems with polytopic uncertainty so that the closed-loop systems are DR stable with their transfer matrices having H2 norm and H¡Û norm bounded by a prescribed value ru. The formar part of the thesis provides less conservative LMI conditions for H2 and H¡Û analysis and the output feedback control of discrete system than those appeared in the current research. While the latter part of the thesis extend the current research to DR stable with H2 and H¡Û design. Finally, numerical examples are illustrated to show improvement of the propered result.
|
5 |
Contributions to nonlinear system modelling and controller synthesis via convex structuresRobles Ruiz, Ruben 23 April 2018 (has links)
Esta tesis discute diferentes metodologías de modelado para extraer mejores prestaciones o resultados de estabilidad que aquéllas que el modelado convencional basado en sector no-lineal de sistemas Takagi-Sugeno (también denominados cuasi-LPV) es capaz de producir.
En efecto, incluso si las LMIs pueden probar distintas cotas de prestaciones o márgenes de estabilidad (tasa de decaimiento, $\mathcal H_\infty$, etc.) para sistemas politópicos, es bien conocido que las prestaciones probadas dependen del modelo elegido y, dado un sistema no-lineal, dicho modelo politópico no es único. Por tanto, se presentan exploraciones hacia cómo obtener el modelo que es menos perjudicial para la medida de prestaciones elegida.
Como una última contribución, mejores resultados son obtenidos mediante la extensión del modelado politópico Takagi-Sugeno a un marco de inclusiones en diferencias cuasi-convexas con planificación de ganancia. En efecto, una versión sin planificación de ganancia fue propuesta por un equipo de investigadores de la Universidad de Sevilla (Fiaccini, Álamo, Camacho) para generalizar el modelado politópico, y esta tesis propone una version aún más general de algunos de dichos resultados que incorpora planificación de ganancia. / This thesis discusses different modelling methodologies to eke out best performance/stability results than conventional sector-nonlinearity Takagi-Sugeno (also known as quasi-LPV) systems modelling techniques are able to yield.
Indeed, even if LMIs can prove various performance and stability bounds (decay rate, $\mathcal H_\infty$, etc.) for polytopic systems, it is well known that the proven performance depends on the chosen model and, given a nonlinear dynamic systems, the polytopic embeddings available for it are not unique. Thus, explorations on how to obtain the model which is less deletereous for performance are presented.
As a last contribution, extending the polytopic Takagi-Sugeno setup to a gain-scheduled quasi-convex difference inclusion framework allows to improve the results over the polytopic models. Indeed, the non-scheduled convex difference inclusion framework was proposed by a research team in University of Seville (Fiacchini, Alamo, Camacho) as a generalised modelling methodology which included the polytopic one; this thesis poses a further generalised gain-scheduled version of some of these results. / Aquesta tesi discuteix diferents metodologies de modelatge per extreure millors prestacions o resultats d'estabilitat que aquelles que el modelatge convencional basat en sector no-lineal de sistemes Takagi-Sugeno (també anomenats quasi-LPV) és capaç de produir.
En efecte, fins i tot si les LMIs poden provar diferents cotes de prestacions o marges d'estabilitat (taxa de decaïment, $\mathcal H_\infty$, etc.) per a sistemes politòpics, és ben conegut que les prestacions provades depenen del model triat i, donat un sistema no-lineal, el dit model politòpic no és únic. Per tant, es presenten exploracions cap a com obtenir el model que és menys perjudicial per a la mesura de prestacions triada.
Com una darrera contribució, millors resultats són obtinguts mitjançant l'extensió del modelatge politòpic Takagi-Sugeno a un marc d'inclusions en diferències quasi-convexes amb planificació de guany. En efecte, una versió sense planificació de guany va ser proposada per un equip d'investigadors de la Universitat de Sevilla (Fiaccini, Álamo, Camacho) per a generalitzar el modelatge politòpic, i aquesta tesi proposa una versió més general d'alguns d'aquests resultats que incorpora planificació de guany. / Robles Ruiz, R. (2018). Contributions to nonlinear system modelling and controller synthesis via convex structures [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/100848
|
6 |
Robust Control for Inter-area OscillationsVance, Katelynn Atkins 03 February 2012 (has links)
In order to reduce the detrimental effects of inter-area oscillations on system stability, it is possible to use Linear Matrix Inequalities (LMIs) to design a multi-objective state feedback. The LMI optimization finds a control law that stabilizes several contingencies simultaneously using a polytopic model of the system. However, the number of cases to be considered is limited by computational complexity which increases the chances of infeasibility. In order to circumvent this problem, this paper presents a method for solving multiple polytopic problems having a common base case. The proposed algorithm determines the necessary polytopic control for a particular contingency and classifies the data as belonging to that polytopic domain. The technique has been tested on an 8-machine, 13 bus, system and has been found to give satisfactory results. / Master of Science
|
7 |
Observation et détection de modes pour la synchronisation des systèmes chaotiques : une approche unifiée / Observation and modes detection for the synchronization of chaotic systems : a unified approachHalimi, Meriem 17 December 2013 (has links)
Le travail développé dans ce manuscrit porte sur la synchronisation des systèmes chaotiques. Il est articulé autour de deux axes principaux: la synthèse d'observateur et la détection de mode. Dans un premier temps, quelques rappels sur le chaos et les principales architectures de systèmes de chiffrement chaotiques sont effectués. Ensuite, nous montrons comment les systèmes chaotiques à non linéarité polynomiale ou affines à commutation peuvent se réécrire sous forme LPV polytopique. Une revue des principaux résultats sur la synthèse d'observateurs LPV polytopiques reposant sur l'utilisation des LMI est faite. Une extension des résultats aux observateurs polytopiques à entrées inconnues, à la fois dans le cas déterministe, bruité ou incertain est proposée. Ces observateurs assurent la synchronisation du chaos et donc le déchiffrement dans les systèmes de chiffrement "modulation paramétrique", "commutation chaotique", "transmission à deux canaux" et "chiffrement par inclusion". Pour les systèmes affines à commutation utilisés en tant que générateur du chaos, le cas où l'état discret n'est pas accessible est considéré. Une présentation unifiée des méthodes fondées sur les espaces de parité, proposées dans la littérature pour les systèmes linéaires et affines à commutation à temps discret, est réalisée. Le problème de discernabilité fait l'objet d'une étude approfondie. Une approche pour estimer les retards variables des systèmes affines et affines à commutation à temps discret, formulée en termes de détection de mode, est proposée en tant que solution à l'estimation de retard pour le chiffrement par injection de retard / The work developed in this manuscript addresses the synchronization of chaotic systems. It is organized around two main axes: the observer synthesis and the mode detection. In a first step, we recall the main architectures of chaotic encryption systems and show how chaotic systems with polynomial nonlinearities or switched affine dynamics can be rewritten in a polytopic LPV form. A review of the main LMI based results for polytopic LPV observers synthesis is made. An extension to polytopic unknown input observers, both in the deterministic case and noisy or uncertain case, is proposed. These observers ensure chaos synchronization and information recovering in the framework of the following encryption systems: "parametric modulation", "chaotic switching", "two channels transmission" and "inclusion encryption". For affine switched systems used as a generator of chaos, the case where the discrete state is not available is considered. A unified presentation of mode detection methods based on parity spaces proposed in the literature for linear and affine switched discrete time systems is proposed. The problem of discernibility is the subject of a complete study. An approach to estimate time varying delays for affine switched discrete time systems, formulated in terms of mode detection, is proposed as a solution for delay injection encryption
|
8 |
Utilização da modelagem politópica para a avaliação da margem de estabilidade a pequenas perturbações em sistemas de potência / Use of the polytopic modeling for evaluation of small-signal stability margin in power systemsRodrigues, Carolina Ribeiro 26 July 2007 (has links)
O presente trabalho propõe a utilização conjunta dos conceitos de modelagem politópica e estabilidade quadrática para avaliação da robustez de desempenho de estabilizadores de sistemas de potência (ou PSSs, do inglês, Power System Stabilizers). Controladores de amortecimento do tipo PSS têm sido amplamente utilizados em sistemas elétricos de potência desde o final da década de 60. A maioria destes estabilizadores que hoje estão em operação foi projetada segundo uma abordagem clássica, que envolve a linearização das equações do sistema em torno de um ponto de equilíbrio e controle através de um compensador de avanço-atraso de fase. Este procedimento de projeto é bastante difundido devido à facilidade do uso de tais técnicas e ao baixo custo de implementação. No entanto, uma das principais desvantagens inerentes a essa abordagem vem justamente da linearização, pois a validade do controle projetado fica restrita a uma vizinhança do ponto de operação no qual o sistema foi linearizado. Sendo assim, não há garantia formal de desempenho satisfatório do controlador, uma vez que as condições operativas do sistema variam normalmente ao longo do dia. Mesmo que o desempenho seja verificado, após o projeto, para pontos de operação diferentes daquele no qual foi feito a linearização (procedimento que é tipicamente empregado em estudos de estabilidade a pequenas perturbações), o mesmo estará garantido formalmente apenas nas proximidades dos pontos verificados. A presente pesquisa busca o preenchimento desta lacuna referente à falta de garantia formal de desempenho em condições não nominais de operação. Com o intuito de garantir formalmente a robustez de desempenho dos controladores, utilizou-se o conceito de estabilidade quadrática associado a uma modelagem politópica do sistema de potência para verificação do fator de amortecimento mínimo dentre todos os modos de oscilação do sistema (o qual é usualmente adotado em sistemas de potência como critério de desempenho ou, equivalentemente, como indicador de margem de estabilidade a pequenas perturbações). A modelagem politópica é usada como alternativa para a obtenção de um modelo de sistema dinâmico que leva em conta as incertezas referentes ao ponto de operação. Neste tipo de modelagem, ao invés de se considerar apenas um ponto de operação nominal, leva-se em conta um conjunto particular de pontos de operação típicos do sistema (os quais comporão os vértices de um conjunto convexo, chamado de politopo). Posteriormente, com base no conceito de estabilidade quadrática, pode-se garantir que um controlador projetado para garantir um desempenho mínimo aos vértices de um politopo estenderá tal garantia também a qualquer ponto de operação que tiver uma descrição linearizada pertencente a este politopo. Os resultados obtidos demonstram que a associação desses dois conceitos fornece uma alternativa viável e vantajosa para a avaliação da robustez de estabilidade e desempenho em sistemas de potência. O procedimento proposto pode ser usado de maneira complementar ao cálculo de autovalores tipicamente empregado na indústria, estendendo a garantia formal de robustez a um conjunto mais amplo de pontos de operação. / The present work proposes the joint use of polytopic modeling and quadratic stability concepts to evaluate the performance robustness of power systems stabilizers (or PSSs). PSS-type damping controllers have been widely used in electric power systems since the end of 6th decade of this century. The majority of these stabilizers, which are in operation nowadays, were designed according to a classical control approach. This method involves linearization of the system equations around an equilibrium point and control through a lead-lag phase compensator. This procedure has a widespread application in power systems due to the simplicity of the technique and the low implementation cost. However, one of the main disadvantages inherent to this method lies exactly in the linearization, since the validity of the designed control is restricted to a neighborhood of the operation point in which the linearization has been done. Since the system operating condition changes throughout the day, we cannot have a formal guarantee of a satisfactory controller performance. Even if the controller performance is checked for different operating points after the design, the performance will be formally guaranteed only in the neighborhoods of the verified points. The present research aims to fill this gap associated to the lack of a formal performance guarantee in an off-nominal operation condition. With the objective of formally guaranteeing the controller performance, the concept of quadratic stability, associated to a polytopic modeling of the system, was used to check the minimum damping factor among all system modes of oscillation (which is usually adopted in power systems as a performance criteria or, equivalently, as an index of small-signal stability margin). The polytopic modeling is used as an alternative to obtain the dynamic system model that accounts for the uncertainty in the operating point. In this type of modeling, instead of considering only one nominal operating point, a particular set of typical system operating points is chosen (which will compose the vertices of a convex set, called polytope). Later, based on the quadratic stability concept, it is possible to guarantee that a controller designed to achieve a minimum performance index at the vertices of the polytopic set will extend this property to any operation point belonging to this set. The obtained results show that the association of these two concepts provides a viable and advantageous alternative for the evaluation of the stability and performance robustness in power systems. The proposed procedure can be used as a complement to the eigenvalue calculation used in the industry, extending the formal robustness guarantee to a broader set of operating points.
|
9 |
Utilização da modelagem politópica para a avaliação da margem de estabilidade a pequenas perturbações em sistemas de potência / Use of the polytopic modeling for evaluation of small-signal stability margin in power systemsCarolina Ribeiro Rodrigues 26 July 2007 (has links)
O presente trabalho propõe a utilização conjunta dos conceitos de modelagem politópica e estabilidade quadrática para avaliação da robustez de desempenho de estabilizadores de sistemas de potência (ou PSSs, do inglês, Power System Stabilizers). Controladores de amortecimento do tipo PSS têm sido amplamente utilizados em sistemas elétricos de potência desde o final da década de 60. A maioria destes estabilizadores que hoje estão em operação foi projetada segundo uma abordagem clássica, que envolve a linearização das equações do sistema em torno de um ponto de equilíbrio e controle através de um compensador de avanço-atraso de fase. Este procedimento de projeto é bastante difundido devido à facilidade do uso de tais técnicas e ao baixo custo de implementação. No entanto, uma das principais desvantagens inerentes a essa abordagem vem justamente da linearização, pois a validade do controle projetado fica restrita a uma vizinhança do ponto de operação no qual o sistema foi linearizado. Sendo assim, não há garantia formal de desempenho satisfatório do controlador, uma vez que as condições operativas do sistema variam normalmente ao longo do dia. Mesmo que o desempenho seja verificado, após o projeto, para pontos de operação diferentes daquele no qual foi feito a linearização (procedimento que é tipicamente empregado em estudos de estabilidade a pequenas perturbações), o mesmo estará garantido formalmente apenas nas proximidades dos pontos verificados. A presente pesquisa busca o preenchimento desta lacuna referente à falta de garantia formal de desempenho em condições não nominais de operação. Com o intuito de garantir formalmente a robustez de desempenho dos controladores, utilizou-se o conceito de estabilidade quadrática associado a uma modelagem politópica do sistema de potência para verificação do fator de amortecimento mínimo dentre todos os modos de oscilação do sistema (o qual é usualmente adotado em sistemas de potência como critério de desempenho ou, equivalentemente, como indicador de margem de estabilidade a pequenas perturbações). A modelagem politópica é usada como alternativa para a obtenção de um modelo de sistema dinâmico que leva em conta as incertezas referentes ao ponto de operação. Neste tipo de modelagem, ao invés de se considerar apenas um ponto de operação nominal, leva-se em conta um conjunto particular de pontos de operação típicos do sistema (os quais comporão os vértices de um conjunto convexo, chamado de politopo). Posteriormente, com base no conceito de estabilidade quadrática, pode-se garantir que um controlador projetado para garantir um desempenho mínimo aos vértices de um politopo estenderá tal garantia também a qualquer ponto de operação que tiver uma descrição linearizada pertencente a este politopo. Os resultados obtidos demonstram que a associação desses dois conceitos fornece uma alternativa viável e vantajosa para a avaliação da robustez de estabilidade e desempenho em sistemas de potência. O procedimento proposto pode ser usado de maneira complementar ao cálculo de autovalores tipicamente empregado na indústria, estendendo a garantia formal de robustez a um conjunto mais amplo de pontos de operação. / The present work proposes the joint use of polytopic modeling and quadratic stability concepts to evaluate the performance robustness of power systems stabilizers (or PSSs). PSS-type damping controllers have been widely used in electric power systems since the end of 6th decade of this century. The majority of these stabilizers, which are in operation nowadays, were designed according to a classical control approach. This method involves linearization of the system equations around an equilibrium point and control through a lead-lag phase compensator. This procedure has a widespread application in power systems due to the simplicity of the technique and the low implementation cost. However, one of the main disadvantages inherent to this method lies exactly in the linearization, since the validity of the designed control is restricted to a neighborhood of the operation point in which the linearization has been done. Since the system operating condition changes throughout the day, we cannot have a formal guarantee of a satisfactory controller performance. Even if the controller performance is checked for different operating points after the design, the performance will be formally guaranteed only in the neighborhoods of the verified points. The present research aims to fill this gap associated to the lack of a formal performance guarantee in an off-nominal operation condition. With the objective of formally guaranteeing the controller performance, the concept of quadratic stability, associated to a polytopic modeling of the system, was used to check the minimum damping factor among all system modes of oscillation (which is usually adopted in power systems as a performance criteria or, equivalently, as an index of small-signal stability margin). The polytopic modeling is used as an alternative to obtain the dynamic system model that accounts for the uncertainty in the operating point. In this type of modeling, instead of considering only one nominal operating point, a particular set of typical system operating points is chosen (which will compose the vertices of a convex set, called polytope). Later, based on the quadratic stability concept, it is possible to guarantee that a controller designed to achieve a minimum performance index at the vertices of the polytopic set will extend this property to any operation point belonging to this set. The obtained results show that the association of these two concepts provides a viable and advantageous alternative for the evaluation of the stability and performance robustness in power systems. The proposed procedure can be used as a complement to the eigenvalue calculation used in the industry, extending the formal robustness guarantee to a broader set of operating points.
|
10 |
Coordinated Control of Inter-area Oscillations using SMA and LMIPal, Anamitra 13 March 2012 (has links)
The traditional approach to damp inter-area oscillations is through the installation of Power System Stabilizers (PSSs) which provide damping control action through excitation control systems of the generating units. However, study of recent blackouts has shown that the control action provided by a PSS alone is not sufficient for damping oscillations in modern power systems which operate under stressed conditions. An integrated form of control using remote measurements to coordinate the different control elements present in the system is the need of the hour.
One way of implementing such a coordinated control is through the development of a Linear Matrix Inequality (LMI)-based polytopic model of the system that guarantees pole placement for a variety of operating conditions. The size of the polytopic formulation is an issue for application of LMIs to large systems. The use of Selective Modal Analysis (SMA) alleviates this problem by reducing the size of the system. The previous attempts have used a model containing all the and modes, with SMA being used to eliminate all the other states. In practical applications the resulting system was still found to be too large to use in a polytopic model. This thesis presents an algorithm to reduce the size of the system to the relevant modes of oscillations.
A 16 machine, 68 bus equivalent model of the New England-New York interconnected power system is used as the test case with DC lines and SVCs acting as the control. The algorithm is then applied to a 127-bus equivalent model of the WECC System. The use of ESDs as a form of control is also demonstrated. The results indicate that the proposed control successfully damps the relevant modes of oscillations without negatively damping the other modes. The control is then transferred to a more detailed 4000+ bus model of the WECC system to realize its performance on real-world systems. / Master of Science
|
Page generated in 0.0157 seconds